Thực hành 2 trang 61 Toán 11 Tập 2 Chân trời sáng tạo
Cho tứ diện OABC có OA vuông góc với mặt phẳng (OBC) và có A′, B′, C′ lần lượt là trung điểm của OA, OB, OC. Vẽ OH là đường cao của tam giác OBC. Chứng minh rằng:
Giải Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng - Chân trời sáng tạo
Thực hành 2 trang 61 Toán 11 Tập 2: Cho tứ diện OABC có OA vuông góc với mặt phẳng (OBC) và có A′, B′, C′ lần lượt là trung điểm của OA, OB, OC. Vẽ OH là đường cao của tam giác OBC. Chứng minh rằng:
a) OA ⊥ (A ′B′C′) ;
b) B′ C′ ⊥ (OAH ).
Lời giải:
a) Xét tam giác OAB:
A′ là trung điểm OA
B′ là trung điểm AB
Nên A ′B′ là đường trung bình của ΔOAB.
Do đó A ′B′ // OB ⇒ A ′B′ // (OBC) (vì
Tương tự: B′C′ là đường trung bình của ΔABC
Do đó B ′C′ // BC ⇒ B ′C′ // (OBC) (vì
Ta có:
Mà OA ⊥ (OBC)
Vậy OA ⊥ (A ′B′C′).
b) Ta có OA ⊥ (OBC) nên OA ⊥ BC
M à OH ⊥ BC (OH là đường cao của ΔOBC) , suy ra BC ⊥ (OAH)
Lại có: B′C′ // BC nên B ′C′ ⊥ (OAH).
Lời giải bài tập Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng hay, chi tiết khác: