Giải Toán 12 trang 46 Tập 2 Kết nối tri thức
Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 12 trang 46 Tập 2 trong Bài 15: Phương trình đường thẳng trong không gian Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 46.
Giải Toán 12 trang 46 Tập 2 Kết nối tri thức
HĐ6 trang 46 Toán 12 Tập 2: Trong không gian Oxyz, cho hai đường thẳng ∆1; ∆2 lần lượt đi qua các điểm A1(x1; y1; z1), A2(x2; y2; z2) và tương ứng có vectơ chỉ phương (H.5.29).
a) Tìm điều kiện đối với và để ∆1 và ∆2 song song hoặc trùng nhau.
b) Giả sử và thì ∆1 và ∆2 có cắt nhau hay không?
c) Giả sử thì ∆1 và ∆2 có chéo nhau hay không?
Lời giải:
a) ∆1 // ∆2 .
∆1 ≡ ∆2 .
b) ∆1 và ∆2 cắt nhau khi và chỉ khi và không cùng phương và , và đồng phẳng. Tức là và .
c) ∆1 và ∆2 chéo nhau khi và chỉ khi , và không đồng phẳng. Tức là:
Luyện tập 8 trang 46 Toán 12 Tập 2: Trong không gian Oxyz, chứng minh rằng hai đường thẳng sau song song với nhau:
và
Lời giải:
Ta có đường thẳng ∆1 đi qua điểm A(3; 0; 1) và có vectơ chỉ phương
Đường thẳng ∆2 đi qua điểm B(1; 2; 0) và có vectơ chỉ phương
Vì và A ∉ ∆2 nên ∆1 // ∆2.
Luyện tập 9 trang 47 Toán 12 Tập 2: Trong không gian Oxyz, cho hai đường thẳng và . Chứng minh rằng:
a) Hai đường thẳng ∆1 và ∆2 song song với nhau;
b) Đường thẳng ∆1 và trục Ox chéo nhau;
c) Đường thẳng ∆2 trùng với đường thẳng
d) Đường thẳng ∆2 cắt trục Oz.
Lời giải:
Đường thẳng ∆1 đi qua điểm A(1; −2; 3) và có vectơ chỉ phương
Đường thẳng ∆2 đi qua điểm B(−1; −1; 0) và có vectơ chỉ phương
a) Vì và A ∉ ∆2 nên hai đường thẳng ∆1 và ∆2 song song với nhau.
b) Trục Ox đi qua điểm O(0; 0; 0) và có vectơ chỉ phương là
Có và .
Có . Do đó đường thẳng ∆1 và trục Ox chéo nhau.
c) Đường thẳng ∆3 đi qua điểm C(−2; −2; −4) và có vectơ chỉ phương .
Vì và B ∈ ∆3 nên đường thẳng ∆2 trùng với đường thẳng ∆3.
d) Trục Oz đi qua điểm O(0; 0; 0) và có vectơ chỉ phương là .
Có ,
Có
Do đó đường thẳng ∆2 cắt trục Oz.
Lời giải bài tập Toán 12 Bài 15: Phương trình đường thẳng trong không gian hay khác: