X

Giải Toán lớp 7 Chân trời sáng tạo

Bài 4 trang 63 Toán 7 Tập 2 Chân trời sáng tạo


Cho tam giác ABC cân tại A (Hình 16). Tia phân giác của góc B cắt AC tại F, tia phân giác của góc C cắt AB tại E.

Giải Toán 7 Bài 3: Tam giác cân - Chân trời sáng tạo

Bài 4 trang 63 Toán 7 Tập 2: Cho tam giác ABC cân tại A (Hình 16). Tia phân giác của góc B cắt AC tại F, tia phân giác của góc C cắt AB tại E.

Bài 4 trang 63 Toán 7 Tập 2 Chân trời sáng tạo

a) Chứng minh rằng ABF^=ACE^.

b) Chứng minh rằng tam giác AEF cân.

c) Gọi I là giao điểm của BF và CE. Chứng minh rằng tam giác IBC và tam giác IEF là những tam giác cân.

Lời giải:

a) Do tam giác ABC cân tại A nên AB = AC và ABC^=ACB^.

Do BF là tia phân giác của ABC^nên ABF^=FBC^=12ABC^.

Do CE là tia phân giác của ACB^nên ACE^=ECB^=12ACB^.

Do đó ABF^=ACE^.

b) Xét ΔABFΔACEcó:

ABF^=ACE^(chứng minh trên).

AB = AC (chứng minh trên).

A^chung.

Do đó ΔABF=ΔACE(g.c.g).

Suy ra AF = AE (2 cạnh tương ứng).

Tam giác AEF có AF = AE nên tam giác AEF cân tại A.

c) Ta có FBC^=ECB^nên IBC^=ICB^.

Tam giác IBC có IBC^=ICB^nên tam giác IBC cân tại I.

Do đó IB = IC.

Xét ΔEIBΔFICcó:

EIB^=FIC^(đối đỉnh).

IB = IC (chứng minh trên).

EBI^=FCI^(chứng minh trên).

Do đó ΔEIB=ΔFIC(g.c.g).

Suy ra IE = IF (2 cạnh tương ứng).

Tam giác IEF có IE = IF nên tam giác IEF cân tại I.

Lời giải bài tập Toán 7 Bài 3: Tam giác cân hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác: