X

Lý thuyết Toán lớp 7 Kết nối tri thức

Các trường hợp bằng nhau của tam giác vuông (Lý thuyết Toán lớp 7) - Kết nối tri thức


Haylamdo biên soạn và sưu tầm với tóm tắt lý thuyết Toán 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 7 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 7.

Các trường hợp bằng nhau của tam giác vuông (Lý thuyết Toán lớp 7) - Kết nối tri thức

Lý thuyết Các trường hợp bằng nhau của tam giác vuông

1. Ba trường hợp bằng nhau của tam giác vuông

• Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Ví dụ: Trong hình dưới đây, ΔABCvuông tại A và ΔA'B'C'vuông tại A'có:

AB = A'B'; AC = A'C'. Khi đó ΔABC= ΔA'B'C'(hai cạnh góc vuông).

Các trường hợp bằng nhau của tam giác vuông (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 1)

• Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Ví dụ: Trong hình dưới đây, ΔABCvuông tại A và ΔA'B'C'vuông tại A'có:

AC = A'C'; C^=C'^. Khi đó ΔABC= ΔA'B'C'(cạnh góc vuông – góc nhọn kề).

Các trường hợp bằng nhau của tam giác vuông (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 2)

• Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Ví dụ: Trong hình dưới đây, ΔABCvuông tại A và ΔA'B'C'vuông tại <A'có:

BC = B'C'; C^=C'^. Khi đó ΔABC= ΔA'B'C'(cạnh huyền – góc nhọn).

Các trường hợp bằng nhau của tam giác vuông (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 3)

2. Trường hợp bằng nhau đặc biệt của tam giác vuông

• Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Ví dụ: Trong hình dưới đây, ΔABCvuông tại A và ΔA'B'C'vuông tại A'có:

BC = B'C'; AC = A'C'. Khi đó ΔABC= <ΔA'B'C'(cạnh huyền – cạnh góc vuông).

Các trường hợp bằng nhau của tam giác vuông (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 4)

Bài tập Các trường hợp bằng nhau của tam giác vuông

Bài 1. Mỗi hình sau có các cặp tam giác vuông nào bằng nhau? Vì sao?

Các trường hợp bằng nhau của tam giác vuông (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 5)

Hướng dẫn giải

a) Hai tam giác DEG (vuông tại G) và tam giác DFG (vuông tại G) có:

DG là cạnh chung

EDG^=FDG^

Nên ΔDEG=ΔDFG (cạnh góc vuông – góc nhọn kề).

b) Hai tam giác HIK (vuông tại I) và tam giác KJH (vuông tại J) có:

HK là cạnh chung

HI = KJ

Nên ΔHIK=ΔKJH (cạnh huyền – cạnh góc vuông).

c) Hai tam giác MLO (vuông tại L) và tam giác ONM (vuông tại N) có:

MO là cạnh chung

LOM^=NMO^

Nên ΔMLO=ΔONM (cạnh huyền –góc nhọn).

d) Hai tam giác SRP (vuông tại R) và tam giác QPR (vuông tại P) có:

RP là cạnh chung

SR = QP

Nên ΔSRP=ΔQPR (hai cạnh góc vuông).

Bài 2. Cho hình chữ nhật ABCD, M là trung điểm của cạnh CD. Chứng minh rằng ΔADM=ΔBCM.

Hướng dẫn giải

Các trường hợp bằng nhau của tam giác vuông (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 6)

Các trường hợp bằng nhau của tam giác vuông (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 7)

ABCD là hình chữ nhật ⇒ AD = BC và ADM^=BCM^=90°

Xét tam giác ADM (vuông tại D) và tam giác BCM (vuông tại C) có:

AD = BC (chứng minh trên)

DM = CM (theo giả thiết)

ΔADM=ΔBCM (hai cạnh góc vuông)

Bài 3. Cho hình vẽ dưới đây, biết AB vuông góc với BC, AD vuông góc với CD và cạnh AB = AD. Chứng minh rằng:

a) ΔBAC=ΔDAC;

b) AC vuông góc với BD.

Các trường hợp bằng nhau của tam giác vuông (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 8)

Hướng dẫn giải

Các trường hợp bằng nhau của tam giác vuông (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 9)

Các trường hợp bằng nhau của tam giác vuông (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 10)

a) Xét tam giác BAC (vuông tại B) và tam giác DAC (vuông tại D) có:

AC là cạnh chung

AB = AD (theo giả thiết)

ΔBAC=ΔDAC (cạnh huyền – cạnh góc vuông)

b) Gọi H là giao điểm của AC và BD.

ΔBAC=ΔDAC (theo câu a) ⇒ BAC^=DAC^ (hai góc tương ứng) hay BAH^=DAH^

Xét tam giác BAH và tam giác DAH có:

AB = AD (theo giả thiết)

BAH^=DAH^ (chứng minh trên)

AH là cạnh chung

ΔBAH=ΔDAH (c.g.c)

AHB^=AHD^ (hai góc tương ứng)

AHB^+AHD^=180°(hai góc kề bù)

Nên AHB^=AHD^=90°

⇒AC ⊥ BD (đpcm).

Học tốt Các trường hợp bằng nhau của tam giác vuông

Các bài học để học tốt Các trường hợp bằng nhau của tam giác vuông Toán lớp 7 hay khác:

Xem thêm tóm tắt lý thuyết Toán lớp 7 Kết nối tri thức hay, chi tiết khác: