X

Giải Toán 8 Chân trời sáng tạo

Khám phá 6 trang 78 Toán 8 Tập 1 Chân trời sáng tạo


Cho ABCD là một hình bình hành. Giải thích tại sao tứ giác ABCD có bốn cạnh bằng nhau trong mỗi trường hợp sau:

Giải Toán 8 Bài 4: Hình bình hành – Hình thoi - Chân trời sáng tạo

Khám phá 6 trang 78 Toán 8 Tập 1: Cho ABCD là một hình bình hành. Giải thích tại sao tứ giác ABCD có bốn cạnh bằng nhau trong mỗi trường hợp sau:

Trường hợp 1: AB = AD.

Trường hợp 2: AC vuông góc với BD.

Trường hợp 3: AC là phân giác góc BAD.

Trường hợp 4: BD là phân giác góc ABC.

Lời giải:

Khám phá 6 trang 78 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

• Trường hợp 1: AB = AD.

Khám phá 6 trang 78 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Vì ABCD là hình bình hành nên AD = BC và AB = CD.

Lại có AB = AD (giả thiết)

Do đó AB = AD = BC = CD.

• Trường hợp 2: AC vuông góc với BD.

Khám phá 6 trang 78 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Vì ABCD là hình bình hành nên AD = BC, AB = CD và hai đường chéo AC, BD cắt nhau tại trung điểm O của mỗi đường.

Xét DOAB và DOCB có:

AOB^=COB^=90°; OB là cạnh chung; OA = OC

Do đó DOAB = DOCB (hai cạnh góc vuông)

Suy ra AB = CB (hai cạnh tương ứng).

Mà AD = BC và AB = CD nên AB = CD = CB = DA.

• Trường hợp 3: AC là phân giác góc BAD.

Khám phá 6 trang 78 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Vì ABCD là hình bình hành nên AB // CD

Do đó BAC^=CDA^ (so le trong).

BAC^=CAD^ (do AC là tia phân giác của góc BAD)

Suy ra CAD^=CDA^.

Tam giác ACD có CAD^=CDA^ nên là tam giác cân tại D

Suy ra DA = DC.

Lại có AB = CD và AD = BC (chứng minh trên).

Do đó AB = BC = CD = DA.

• Trường hợp 4: BD là phân giác góc ABC.

Chứng minh tương tự như trường hợp 3 ta cũng có AB = BC = CD = DA.

Lời giải bài tập Toán 8 Bài 4: Hình bình hành – Hình thoi hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác: