HĐ3 trang 58 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8
Cho hình bình hành ABCD (H.3.30).
Giải Toán 8 Bài 12: Hình bình hành - Kết nối tri thức
HĐ3 trang 58 Toán 8 Tập 1: Cho hình bình hành ABCD (H.3.30).
a) Chứng minh ∆ABC = ∆CDA.
Từ đó suy ra AB = CD, AD = BC và .
b) Chứng minh ∆ABD = ∆CDB. Từ đó suy ra .
c) Gọi giao điểm của hai đường chéo AC, BD là O. Chứng minh ∆AOB = ∆COD. Từ đó suy ra OA = OC, OB = OD.
Lời giải:
Vì ABCD là hình bình hành nên AB // CD; AD // BC.
Suy ra (các cặp góc so le trong).
Xét ∆ABC và ∆CDA có:
(chứng minh trên);
Cạnh AC chung.
(chứng minh trên);
Do đó ∆ABC = ∆CDA (g.c.g).
Suy ra AB = CD, AD = BC (các cặp cạnh tương ứng); (hai góc tương ứng).
b) Xét ∆ABD và ∆CDB có:
AB = CD (chứng minh trên);
AD = BC (chứng minh trên);
Cạnh BD chung.
Do đó ∆ABD = ∆CDB (c.c.c).
Suy ra (hai góc tương ứng).
c) Xét ∆AOB và ∆COD có:
(do );
AB = CD (chứng minh trên);
(do AB // CD)
Do đó ∆AOB = ∆COD (g.c.g).
Suy ra OA = OC, OB = OD (các cặp cạnh tương ứng).
Lời giải bài tập Toán 8 Bài 12: Hình bình hành hay, chi tiết khác:
HĐ2 trang 58 Toán 8 Tập 1: Hãy nêu các tính chất của hình bình hành mà em đã biết ....
Câu hỏi trang 59 Toán 8 Tập 1: Hãy viết giả thiết, kết luận của Định lí 2 ....