X

Toán 9 Chân trời sáng tạo

Bài 4 trang 71 Toán 9 Tập 1 Chân trời sáng tạo


Lúc 6 giờ sáng, bạn An đi xe đạp từ nhà (điểm A) đến trường (điểm B). Khi đi từ A đến B, An phải đi đoạn lên dốc AC và đoạn xuống dốc CB (Hình 12). Biết AB = 762 m,

Giải Toán 9 Bài 2: Hệ thức giữa cạnh và góc của tam giác vuông - Chân trời sáng tạo

Bài 4 trang 71 Toán 9 Tập 1: Lúc 6 giờ sáng, bạn An đi xe đạp từ nhà (điểm A) đến trường (điểm B). Khi đi từ A đến B, An phải đi đoạn lên dốc AC và đoạn xuống dốc CB (Hình 12). Biết AB = 762 m, A^=6°,  B^=4°.

Bài 4 trang 71 Toán 9 Tập 1 Chân trời sáng tạo

a) Tính chiều cao h của con dốc.

b) Hỏi bạn An đến trường lúc mấy giờ? Biết rằng tốc độ khi lên dốc là 4 km/h và tốc độ khi xuống dốc là 19 km/h.

Lời giải:

a) Đặt AH = x (m) (0 < x < 762).

Suy ra BH = 762 – x (m).

Áp dụng hệ thức về cạnh và góc trong tam giác vuông, ta có:

 h = x . tan 6° và h = (762 – x) . tan 4°.

Suy ra x . tan 6° = (762 – x) . tan 4°

x . tan 6° = 762 . tan 4° – x . tan 4°

x . tan 6° + x . tan 4° = 762 . tan 4°

x . (tan 6° + tan 4°) = 762 . tan 4°

x=762 . tan4°tan6°+tan4° .

Do đó h=762 . tan4°tan6°+tan4° tan6°32  (m) .

Vậy chiều cao h của con dốc khoảng 32 m.

b) Xét tam giác AHC vuông tại H có A^=6°  nên h = AC . sin A.

Suy ra AC=hsinA=32sin6°306,1  (m)=0,3061  (km) .

Xét tam giác BHC vuông tại H có B^=4°  nên h = BC . sin B.

Suy ra BC=hsinB=32sin4°458,7  (m)=0,4587  (km) .

Thời gian An đi từ nhà đến trường là:

0,30614+0,4587190,1 (giờ) = 6 phút.

Lúc 6 giờ sáng, bạn An đi xe đạp từ nhà và đến trường vào lúc:

6 giờ + 6 phút = 6 giờ 6 phút.

Vậy bạn An đến trường lúc 6 giờ 6 phút.

Lời giải bài tập Toán 9 Bài 2: Hệ thức giữa cạnh và góc của tam giác vuông hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác: