Lý thuyết Toán 9 Tỉ số lượng giác của góc nhọn - Chân trời sáng tạo
Haylamdo biên soạn tóm tắt lý thuyết Toán 9 Bài 1: Tỉ số lượng giác của góc nhọn sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 9 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 9.
Lý thuyết Toán 9 Tỉ số lượng giác của góc nhọn - Chân trời sáng tạo
Lý thuyết Tỉ số lượng giác của góc nhọn
1. Định nghĩa tỉ số lượng giác của góc nhọn
Cho tam giác ABC vuông tại A có góc nhọn B bằng α. Ta gọi AC là cạnh đối của góc α, AB là cạnh kề của góc α.
Xét tam giác ABC vuông tại A có ta có:
• Tỉ số giữa cạnh đối và cạnh huyền được gọi là sin của góc α, kí hiệu sin α.
• Tỉ số giữa cạnh kề và cạnh huyền được gọi là côsin của góc α, kí hiệu cos α.
• Tỉ số giữa cạnh đối và cạnh kề được gọi là tang của góc α, kí hiệu tan α.
• Tỉ số giữa cạnh kề và cạnh đối được gọi là côtang của góc α, kí hiệu cot α.
Chú ý: Với góc nhọn α, ta có:
• 0 < sin α < 1; 0 < cos α < 1.
•
• Ta có bảng tỉ số lượng giác của các góc 30°, 45°, 60° như sau:
Ví dụ 1: Cho tam giác ABC vuông tại B có AB = 2, AC = 3. Tính các tỉ số lượng giác của góc nhọn A.
Hướng dẫn giải
Theo định lí Pythagore, ta có: AC2 = AB2 + BC2
Nên BC2 = AC2 – AB2 = 32 − 22 = 5 nên
Ta có các tỉ số lượng giác của góc A là:
Vậy
Ví dụ 2: Tính giá trị của biểu thức
Hướng dẫn giải
Ta có:
2. Tỉ số lượng giác của hai góc phụ nhau
• Hai góc được gọi là phụ nhau nếu chúng có tổng bằng 90°. Như vậy, góc phụ của góc nhọn α là góc (90° − α).
• Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.
Chú ý: Khi viết các tỉ số lượng giác của một góc nhọn trong tam giác, ta có thể viết sin A thay cho
Ví dụ: So sánh:
a) sin 65° và cos 35°;
b) tan 15° và cot 70°.
Hướng dẫn giải
a) Ta có: mà 25° < 35°.
Suy ra, sin 65° < cos 35°.
b) Ta có: mà 75° > 70°.
Suy ra, tan 15° > cot 70°.
Bài tập Tỉ số lượng giác của góc nhọn
Bài 1. Cho α là góc nhọn bất kỳ. Chọn khẳng định đúng.
A.
B.
C.
D.
Hướng dẫn giải
Đáp án đúng là: B
Cho α là góc nhọn bất kỳ, khi đó
Bài 2. Cho α là góc nhọn bất kỳ. Chọn khẳng định sai.
A.
B.
C.
D.
Hướng dẫn giải
Đáp án đúng là: D
Cho α là góc nhọn bất kỳ, khi đó:
•
•
•
Bài 3. Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác của góc B trong mỗi trường hợp sau:
a) BC = 12 cm; AB = 8 cm;
b)
Hướng dẫn giải
a) Theo định lí Pythagore, ta có: BC2 = AB2 + AC2
Suy ra AC2 = BC2 – AB2 = 122 – 82 = 80.
Do đó cm.
Các tỉ số lượng giác của góc B là:
•
•
Vậy
b) Theo định lí Pythagore, ta có: BC2 = AB2 + AC2
Suy ra
Các tỉ số lượng giác của góc B là:
•
•
Vậy
Bài 4. Rút gọn và tính các biểu thức sau:
a)
b)
Hướng dẫn giải
a) Ta có:
= 0 + 0 + 5 = 5.
b) Ta có:
= 1 + 1 = 2.
Bài 5. Cho tam giác ABC vuông tại A có AC = 10 cm, Tính sinA và độ dài cạnh AB và BC.
Hướng dẫn giải
Ta có: suy ra
Do đó
• Thay ta có: (do sin A > 0 vì góc A nhọn).
Ta lại có: suy ra AB = AC.cos A.
• Thay AC = 10 cm, ta có: (cm).
Mà suy ra BC = AC.sin A.
• Thay AC = 10 cm, ta có: (cm)
Vậy AB = 5 cm, cm
Học tốt Tỉ số lượng giác của góc nhọn
Các bài học để học tốt Tỉ số lượng giác của góc nhọn Toán lớp 9 hay khác: