X

Toán 9 Kết nối tri thức

HĐ4 trang 73 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9


Giải Toán 9 Bài 28: Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác - Kết nối tri thức

HĐ4 trang 73 Toán 9 Tập 2:

a) Vẽ tam giác đều ABC. Hãy trình bày cách xác định tâm của đường tròn ngoại tiếp tam giác ABC và vẽ đường tròn đó.

b) Giải thích vì sao tâm O của đường tròn ngoại tiếp tam giác ABC trùng với trọng tâm của tam giác đó (H.9.17).

HĐ4 trang 73 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

c) Giải thích vì sao OBM^=30°OB=33BC (với M là trung điểm của BC).

Lời giải:

a) Vẽ ba đường trung trực của các cạnh AB, BC, CA của tam giác ABC. Ba đường trung trực này cắt nhau tại một điểm O, khi đó O là tâm đường tròn ngoại tiếp tam giác ABC (hình vẽ)

HĐ4 trang 73 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

b) Vì tam giác ABC đều nên ba đường trung trực cũng đồng thời là ba đường trung tuyến, do đó giao điểm O của ba đường trên là trọng tâm của tam giác.

Vậy tâm O của đường tròn ngoại tiếp tam giác ABC trùng với trọng tâm của tam giác đó.

c)

HĐ4 trang 73 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Vì tam giác ABC đều nên đường trung trực BO của AC cũng đồng thời là đường phân giác của góc ABC. Do đó OBM^=12ABC^=1260°=30°.

Xét ∆OBM vuông tại M có cosOBM^=BMBO.

Suy ra BO=BMcosOBM^=12BCcos30° (do M là trung điểm của BC nên BM=12BC).

Do đó BO=12BC32=BC3=33BC.

Lời giải bài tập Toán 9 Bài 28: Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác: