X

Toán 9 Kết nối tri thức

HĐ6 trang 75 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9


Cho tam giác đều ABC có trọng tâm G.

Giải Toán 9 Bài 28: Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác - Kết nối tri thức

HĐ6 trang 75 Toán 9 Tập 2: Cho tam giác đều ABC có trọng tâm G.

a) Giải thích vì sao G cũng là tâm đường tròn nội tiếp tam giác ABC.

b) Từ đó, giải thích vì sao bán kính đường tròn nội tiếp tam giác ABC bằng một nửa bán kính đường tròn ngoại tiếp tam giác ABC và bằng 36BC.

Lời giải:

HĐ6 trang 75 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

a) Vì ∆ABC là tam giác đều nên ba đường trung tuyến đồng thời là ba đường phân giác, hay trọng tâm G của tam giác cũng là giao điểm của ba đường phân giác của tam giác đó.

Do đó trọng tâm G là tâm đường tròn nội tiếp của tam giác ABC.

b) Vì ∆ABC là tam giác đều nên ba đường trung tuyến đồng thời là ba đường trung trực, hay trọng tâm G của tam giác cũng là giao điểm của ba đường trung trực của tam giác đó.

Do đó trọng tâm G là tâm đường tròn ngoại tiếp của tam giác ABC.

Gọi M là trung điểm của BC. Khi đó ta có GM, GB lần lượt là bán kính đường tròn nội tiếp và bán kính đường tròn ngoại tiếp của tam giác ABC.

Vì ∆ABC là tam giác đều có BG là đường phân giác của góc ABC nên GBM^=12ABC^=1260°=30°.

Vì M là trung điểm của BC nên BM=12BC.

Xét ∆GBM vuông tại M, ta có

GM=GBsinGBM^=GBsin30°=12GB.

GM=BMtanGBM^=12BCtan30°=12BC33=36BC.

Vậy bán kính đường tròn nội tiếp tam giác ABC bằng một nửa bán kính đường tròn ngoại tiếp tam giác ABC và bằng 36BC

Lời giải bài tập Toán 9 Bài 28: Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác: