X

Toán 9 Kết nối tri thức

HĐ5 trang 74 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9


Cho tam giác ABC có ba đường phân giác đồng quy tại điểm I. Gọi D, E, F lần lượt là chân các đường vuông góc kẻ từ I xuống các cạnh BC, CA và AB (H.9.19).

Giải Toán 9 Bài 28: Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác - Kết nối tri thức

HĐ5 trang 74 Toán 9 Tập 2: Cho tam giác ABC có ba đường phân giác đồng quy tại điểm I. Gọi D, E, F lần lượt là chân các đường vuông góc kẻ từ I xuống các cạnh BC, CA và AB (H.9.19).

HĐ5 trang 74 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

a) Hãy giải thích vì sao các điểm D, E, F cùng nằm trên một đường tròn có tâm I.

b) Gọi (I) là đường tròn trên. Hãy giải thích vì sao (I) tiếp xúc với các cạnh của tam giác ABC.

Lời giải:

a) Vì I là giao điểm của ba đường phân giác của tam giác ABC nên I cách đều ba cạnh của tam giác đó.

Mặt khác, ID ⊥ BC, IE ⊥ CA, IF ⊥ AB nên ID = IE = IF.

Do đó các điểm D, E, F cùng nằm trên một đường tròn có tâm I.

b) Gọi (I; R) là đường tròn đi qua ba điểm D, E, F. Do đó ID = IE = IF = R.

Vì ID ⊥ BC, ID = R nên BC là tiếp tuyến của (I; R) hay (I) tiếp xúc với cạnh BC.

Vì IE ⊥ AC, IE = R nên AC là tiếp tuyến của (I; R) hay (I) tiếp xúc với cạnh AC.

Vì IF ⊥ AB, IF = R nên AB là tiếp tuyến của (I; R) hay (I) tiếp xúc với cạnh AB.

Vậy (I) tiếp xúc với các cạnh của tam giác ABC.

Lời giải bài tập Toán 9 Bài 28: Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác: