Xét tam giác ABC trong Hình 4.16. a) Viết các tỉ số lượng giác tang
Câu hỏi:
Xét tam giác ABC trong Hình 4.16.
a) Viết các tỉ số lượng giác tang, côtang của góc B và góc C theo b, c.
Trả lời:
a) Xét ∆ABC vuông tại A, theo định nghĩa tỉ số lượng giác và định lí về tỉ số lượng giác của hai góc phụ nhau, ta có:
Xem thêm lời giải bài tập Toán 9 Kết nối tri thức hay, chi tiết:
Câu 1:
Để đo chiều cao của một toà lâu đài (H.4.11), người ta đặt giác kế thẳng đứng tại điểm M. Quay ống ngắm của giác kế sao cho nhìn thấy đỉnh P’ của toà lâu đài dưới góc nhọn α. Sau đó, đặt giác kế thẳng đứng tại điểm N, NM = 20 m, thì nhìn thấy đỉnh P’ dưới góc nhọn β (β < α). Biết chiều cao giác kế là 1,6 m, hãy tính chiều cao của toà lâu đài.
Xem lời giải »
Câu 2:
Cho tam giác ABC vuông tại A, cạnh huyền a và các cạnh góc vuông b, c (H.4.12).
a) Viết các tỉ số lượng giác sin, côsin của góc B và góc C theo độ dài các cạnh của tam giác ABC.
Xem lời giải »
Câu 3:
b) Tính mỗi cạnh góc vuông b và c theo cạnh huyền a và các tỉ số lượng giác trên của góc B và góc C.
Xem lời giải »
Câu 4:
1. Một chiếc thang dài 3 m. Cần đặt chân thang cách chân tường một khoảng bằng bao nhiêu mét (làm tròn đến chữ số thập phân thứ hai) để nó tạo được với mặt đất một góc “an toàn” 65° (tức là đảm bảo thang chắc chắn khi sử dụng) (H.4.14)?
Xem lời giải »
Câu 5:
b) Tính mỗi cạnh góc vuông b và c theo cạnh góc vuông kia và các tỉ số lượng giác trên của góc B và góc C.
Xem lời giải »
Câu 6:
Bóng trên mặt đất của một cây dài 25 m. Tính chiều cao của cây (làm tròn đến dm), biết rằng tia nắng mặt trời tạo với mặt đất góc 40° (H.4.18).
Xem lời giải »
Câu 7:
Cho tam giác vuông ABC có cạnh góc vuông AB = 4, cạnh huyền BC = 8. Tính cạnh AC (làm tròn đến chữ số thập phân thứ ba) và các góc B, C (làm tròn đến độ).
Xem lời giải »
Câu 8:
1. Hãy nêu cách giải tam giác ABC vuông tại A khi biết hai cạnh AB = c, AC = b hoặc AB = c, BC = a và không sử dụng định lí Pythagore (H.4.21).
Xem lời giải »