Bài tập giải và biện luận phương trình bậc hai chọn lọc - Toán lớp 10
Bài tập giải và biện luận phương trình bậc hai chọn lọc
Với Bài tập giải và biện luận phương trình bậc hai chọn lọc Toán lớp 10 tổng hợp 20 bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập giải và biện luận phương trình bậc hai từ đó đạt điểm cao trong bài thi môn Toán lớp 10.
Câu 1. Phương trình ax2 + bx + c = 0 có nghiệm duy nhất khi và chỉ khi
Câu 2. Số nguyên k nhỏ nhất sao cho phương trình : 2x(kx–4) – x2 + 6 = 0 vô nghiệm là:
A. k = –1 B. k = 1 C. k = 2 D. k = 4
Câu 3. Phương trình x2 + m = 0 có nghiệm khi và chỉ khi:
A. m > 0 B. m < 0 C. m ≤ 0 D. m ≥ 0
Câu 4. Để phương trình mx2 + 2(m–3)x + m – 5 = 0 vô nghiệm, với giá trị của m là:
A. m > 9 B. m ≥ 9 C. m < 9 D. m < 9 và m ≠ 0
Câu 5. Phương trình mx2 + 6 = 4x + 3m có nghiệm duy nhất khi:
A. m ∈ ∅ B. m = 0 C. m ∈ R D. m ≠ 0
Câu 6. Phương trình (m2 + 2)x2 + (m-2)x - 3 = 0 có hai nghiệm phân biệt khi:
A. 0 < m < 2 B. m > 2 C. m ∈ R D. m ≤ 2
Câu 7. Phương trình (m+1)x2 - 2mx + m - 2 = 0 vô nghiệm khi:
A. m ≤ -2 B. m < -2 C. m > 2 D. m ≥ 2
Câu 8. Cho phương trình bậc hai: (m–1)x2 – 6(m–1)x + 2m – 3 = 0. Với giá trị nào của m thì phương trình có nghiệm kép ?
A. m = 7/6 B. m = -6/7 C. m = 6/7 D. m = –1
Câu 9. Cho phương trình bậc hai: x2 – 2(m+6)x + m2 = 0. Với giá trị nào của m thì phương trình có nghiệm kép và tìm nghiệm kép đó?
A. m = –3, x1 = x2 = 3
B. m = –3, x1 = x2 = –3
C. m = 3, x1 = x2 = 3
D. m = 3, x1 = x2 = –3
Câu 10. Để hai đồ thị y = -x2 - 2x + 3 và y = x2 - m có hai điểm chung thì:
A. m = -3,5 B. m < -3,5 C. m > -3,5 D. m ≥ -3,5
Câu 11. Với giá trị nào của m thì phương trình 2(x2 - 1) = x(mx + 1) có nghiệm duy nhất
A. m = 17/8
B. m = 2 hoặc m = 17/8
C. m = 2
D. m = 0
Câu 12. Cho phương trình (m + 1)x2 - 6(m + 1)x + 2m + 3 = 0 (1). Với giá trị nào sau đây của m thì phương trình (1)có nghiệm kép?
A. m = 7/6 B. m = 6/7 C. m = -6/7 D. m = -1
Câu 13. Cho phương trình mx2 – 2(m–2)x + m – 3 = 0. Khẳng định nào sau đây là sai?
A. Nếu m > 4 thì phương trình vô nghiệm
B. Nếu 0 ≠ m ≤ 4 thì phương trình có nghiệm:
C. Nếu m = 0 thì phương trình có nghiệm x = 3/4
D. Nếu m = 4 thì phương trình có nghiệm kép x = 3/4
Câu 14. Cho phương trình (x - 1)(x2 - 4mx - 4) = 0. Phương trình có ba nghiệm phân biệt khi
A. m ∈ R B. m ≠ 0 C. m ≠ 3/4 D. m ≠ -3/4
Câu 15. Cho phương trình x2 + 2(m+2)x – 2m – 1 = 0 (1). Với giá trị nào của m thì phương trình (1)có nghiệm
A. m ≤ -5 hoặc m ≥ -1
B. m < -5 hoặc m > -1
C. -5 ≤ m ≤ -1.
D. m ≤ 1 hoặc m ≥ 5
Câu 16. Với giá trị nào của m thì phương trình: mx2 + 2(m-2)x + m - 3 = 0 có 2 nghiệm phân biệt?
A. m ≤ 4 B. m < 4 C. m < 4 và m ≠ 0 D. m ≠ 0
Câu 17. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc [-20; 20] để phương trình x2 - 2mx + 144 = 0 có nghiệm. Tổng của các phần tử trong S bằng:
A. 21 B. 18 C. 1 D. 0
Câu 18. Có bao nhiêu giá trị nguyên của tham số thực m thuộc đoạn [-5; 5] để phương trình mx2 - 2(m+2)x + m - 1 = 0 có hai nghiệm phân biệt
A. 5 B. 6 C. 9 D. 10
Câu 19. Gọi S là tập hợp tất cả các giá trị thực của tham số m để phương trình (m-2)x2 - 2x + 1 - 2m = 0 có nghiệm duy nhất. Tổng của các phần tử trong S bằng:
A. 5/2 B. 3 C. 7/2 D. 9/2
Câu 20. Có bao nhiêu giá trị nguyên của tham số thực m thuộc đoạn [-10; 10] để phương trình x2 - x + m = 0 vô nghiệm?
A. 9 B. 10 C. 20 D. 21
Đáp án và hướng dẫn giải
Câu | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Đáp án | B | C | C | A | B | C | B | C | A | D |
Câu | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Đáp án | B | C | D | D | A | C | D | A | D | B |
Câu 1. Chọn B
Với a ≠ 0 để phương trình có nghiệm duy nhất khi
Với a = 0 để phương trình có nghiệm duy nhất khi
Câu 2. Chọn C
Ta có: 2x(kx–4) – x2 + 6 = 0 ⇔ (2k-1)x2 - 8x + 6 = 0
Khi đó phương trình : 2x(kx–4) – x2 + 6 = 0 vô nghiệm khi
Vì k ∈ Z và k min nên k = 2
Câu 3. Chọn C
Ta có x2 + m = 0 ⇔ x2 = -m
Phương trình có nghiệm khi m ≤ 0
Câu 4. Chọn A
Với m = 0 phương trình thu được -6x - 5 = 0 suy ra phương trình này có nghiệm.
Với m ≠ 0 phương trình vô nghiệm khi (m-3)2 - m(m-5) < 0 ⇔ -m + 9 < 0 ⇔ m > 9
Câu 5. Chọn B
Phương trình viết lại mx2 - 4x + (6-3m) = 0
Với m = 0. Khi đó, phương trình trở thành 4x-6=0⇔x=3/2. Do đó, m=0 là một giá trị cần tìm.
Với m ≠ 0. Ta có Δ' = (-2)2 - m(6-3m) = 3m2 - 6m + 4 = 3(m-1)2 + 1 > 0
Khi đó, phương trình đã cho luôn có hai nghiệm phân biệt nên m ≠ 0 không thỏa mãn
Câu 6. Chọn C
Phương trình đã cho có hai nghiệm phân biệt khi
⇔ 13m2 - 4m + 28 > 0 ⇔ m ∈ R
Câu 7. Chọn B
Với m + 1 = 0 ⇔ m = -1
Khi đó phương trình trở thành 2x - 3 = 0 ⇔ x = 3/2
Với m + 1 ≠ 0 ⇔ m ≠ -1. Ta có Δ' = m2 - (m-2)(m+1) = m + 2
Phương trình vô nghiệm khi Δ' < 0 ⇔ m + 2 < 0 ⇔ m <-2
Câu 8. Chọn C
phương trình có nghiệm kép khi
Câu 9. Chọn A
Để phương trình có nghiệm kép thì : Δ' = (m+6)2 - m2 = 12m + 36 = 0 ⇔ m = -3
Khi đó x1 = x2 = 3.
Câu 10. Chọn D
Xét phương trình -x2 - 2x + 3 = x2 - m ⇔ 2x2 + 2x - m - 3 = 0.
Hai đồ thị có hai điểm chung khi Δ' > 0 ⇔ 1 + 2m + 6 > 0 ⇔ m > -7/2
Câu 11. Chọn B
Ta có 2(x2-1) = x(mx + 1) ⇔ (m - 2)x2 + x + 2 = 0
Với m = 2 phương trình có nghiệm x = -2
Với m ≠ 2 phương trình có nghiệm duy nhất khi
Câu 12. Chọn C
Phương trình có nghiệm kép khi
Câu 13. Chọn D
Với m = 0 ta được phương trình 4x - 3 = 0 ⇔ x = 3/4
Với m ≠ 0 ta có Δ = (m-2)2 - m(m-3) = -m + 4
Với m = 4 phương trình có nghiệm kép x = 1/2
Câu 14. Chọn D
Phương trình có 3 nghiệm phân biệt khi phương trình x2 - 4mx - 4 = 0 có 2 nghiệm phân biệt khác 1
Câu 15. Chọn A
Phương trình có nghiệm khi (m+2)2 + 2m + 1 ≥ 0 ⇔ m2 + 6m + 5 ≥ 0 ⇔
Câu 16. Chọn C
Phương trình có 2 nghiệm phân biệt khi
Câu 17. Chọn D
Phương trình có nghiệm khi Δ' = m2 - 144 ≥ 0 ⇔ m2 ≥ 122 ⇔
m ∈ [-20; 20]; m ∈ Z
⇒ S ={-20; -19; -18;...; -12; 12; 13; 14;...; 20}
Do đó tổng các phần tử trong tập S bằng 0
Câu 18. Chọn A
Phương trình đã cho có hai nghiệm phân biệt khi
Có 5 giá trị nguyên của m thỏa mãn yêu cầu bài toán
Câu 19. Chọn D
Với m = 2, phương trình trở thành -2x - 3 = 0 ⇔ x = -3/2. Do đó m = 2 là một giá trị cần tìm.
Với m ≠ 2, phương trình đã cho là phương trình bậc hai có Δ' = 2m2 - 5m + 3. Để phương trình có nghiệm duy nhất ⇔ Δ' = 0 ⇔ m = 3/2 hoặc m = 1.
Vậy S = {1; 3/2; 2} → tổng các phần tử trong S bằng 1 + 3/2 + 2 = 9/2
Câu 20. Chọn B
Ta có Δ = 1 - 4m
Phương trình vô nghiệm khi Δ < 0 ⇔ 1 - 4m < 0 ⇔ m > 1/4
→ m ∈ {1; 2; 3;...; 10} → Có 10 giá trị thỏa mãn