Thực hành 2 trang 33 Chuyên đề Toán 11 Chân trời sáng tạo


Giải Chuyên đề Toán 11 Bài 6: Phép vị tự - Chân trời sáng tạo

Thực hành 2 trang 33 Chuyên đề Toán 11: Cho tam giác ABC có G, H, O lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác. Gọi A’, B’, C’ lần lượt là trung điểm các cạnh BC, CA, AB.

a) Tìm phép vị tự biến tam giác ABC thành tam giác A’B’C’.

b) Chứng minh ba điểm H, G, O thẳng hàng.

Lời giải:

Thực hành 2 trang 33 Chuyên đề học tập Toán 11 Chân trời sáng tạo

a) Để tìm phép vị tự biến ∆ABC thành ∆A’B’C’, ta tìm phép vị tự biến điểm A thành điểm A’, biến điểm B thành điểm B’, biến điểm C thành điểm C’.

∆ABC có A’ là trung điểm BC và G là trọng tâm.

Theo tính chất trọng tâm của tam giác, ta có AG=2GA' hay GA'=12GA.

Suy ra A’ là ảnh của A qua VG, 12.

Chứng minh tương tự, ta được VG, 12B=B'VG, 12C=C'.

Vậy VG, 12 biến ∆ABC thành ∆A’B’C’.

b) Gọi AD là đường kính của đường tròn tâm O ngoại tiếp ∆ABC.

Suy ra ABD^=90° và O là trung điểm của AD.

Do đó AB ⊥ BD.

Mà CH ⊥ AB (do H là trực tâm của ∆ABC).

Vì vậy BD // CH.

Chứng minh tương tự, ta được BH // CD.

Suy ra tứ giác BHCD là hình bình hành.

Mà A’ là trung điểm BC (giả thiết).

Do đó A’ cũng là trung điểm của DH.

∆ADH có A’O là đường trung bình của tam giác nên A'O=12HA và A’O // HA.

Suy ra A'O=12HA=12AH.

Ta có GO=GA'+A'O=12GA12AH

=12GA+AH=12GH.

Khi đó GOGH cùng phương nên ba điểm G, H, O thẳng hàng.

Vậy ba điểm G, H, O thẳng hàng.

Lời giải Chuyên đề Toán 11 Bài 6: Phép vị tự hay, chi tiết khác:

Xem thêm lời giải bài tập Chuyên đề học tập Toán 11 Chân trời sáng tạo hay, chi tiết khác: