Cho tam giác ABC, gọi A’ là điểm đối xứng với B qua A SBT Toán 10 Tập 1


Haylamdo biên soạn và sưu tầm lời giải Bài 6 trang 103 SBT Toán 10 Tập 1 trong Bài tập cuối chương 5. Với lời giải chi tiết nhất hy vọng sẽ giúp các bạn dễ dàng nắm được cách làm bài tập Sách bài tập Toán 10.

Giải sách bài tập Toán 10 Bài tập cuối chương 5

Bài 6 trang 103 SBT Toán 10 Tập 1: Cho tam giác ABC, gọi A’ là điểm đối xứng với B qua A, gọi B’ là điểm đối xứng với C qua B, gọi C’ là điểm đối xứng với A qua C. Chứng minh rằng với một điểm O tùy ý, ta có:

OA+OB+OC=OA'+OB'+OC'.

Lời giải:

A’ là điểm đối xứng với B qua A nên AB = AA'.

B’ là điểm đối xứng với C qua B nên BC = BB'.

C’ là điểm đối xứng với A qua C nên CA = CC'.

Ta có: OA + OB + OC = OA' + AA' + OB' + BB' + OC' + CC'

= OA' + OB' + OC' + AB + BC + CA

= OA' + OB' + OC' + AC + CA

= OA' + OB' + OC'.

Vậy OA+OB+OC=OA'+OB'+OC'.

Xem thêm lời giải Sách bài tập Toán 10 Chân trời sáng tạo hay, chi tiết khác: