Trong Vật lí ta biết rằng, khi một vật được ném xiên với vận tốc ban đầu v0


Sách bài tập Toán 10 Bài tập cuối chương 6

Bài 6.62 trang 27 Sách bài tập Toán lớp 10 Tập 2: Trong Vật lí ta biết rằng, khi một vật được ném xiên với vận tốc ban đầu v0, góc ném hợp với phương ngang Ox một góc α, nếu ta bỏ qua sức cản của không khí và gió, vật chỉ chịu tác động của trọng lực với gia tốc trọng trường g ≈ 9,8 m/s2, thì độ cao y (so với mặt đất) của vật phụ thuộc vào khoảng cách theo phương ngang x (tính đến mặt đất tại điểm ném) theo một hàm số bậc hai cho bởi công thức

y=-g2vo2cos2αx2+xtanα.

Trong Vật lí ta biết rằng, khi một vật được ném xiên với vận tốc ban đầu v0

Như vậy quỹ đạo chuyển động của vật là một phần của đường parabol. Hãy xác định

a) Các hệ số a, b và c của hàm số bậc hai này;

b) Độ cao lớn nhất mà vật có thể đạt được;

c) Giả sử vận tốc ban đầu v0 không đổi. Từ kết quả câu b) hãy xác định góc ném α để độ cao lớn nhất của vật đạt giá trị lớn nhất.

d) Một quả bóng được đá từ mặt đất lên cao với vận tốc ban đầu v0 = 20 m/s và góc đá so với phương ngang là α = 45°. Khi quả bóng ở độ cao trên 5 m thì khoảng cách theo phương ngang từ vị trí của quả bóng đến vị trí đá bóng nằm trong khoảng nào (làm tròn kết quả đến hàng phần trăm) ?

Lời giải:

a) Hàm số bậc hai y=-g2vo2cos2αx2+xtanα.

Khi đó, các hệ số của hàm số bậc hai là a=-g2v02cos2α<0 (do g, v2, cos2α luôn dương), b = tanα, c = 0.

b)

Toạ độ đỉnh I(xI; yI) của đường parabol là

Trong Vật lí ta biết rằng, khi một vật được ném xiên với vận tốc ban đầu v0

Vậy độ cao lớn nhất của vật là tung độ của đỉnh parabol là: ymax=vo2sin2α2g.

c)

Theo phần b, độ cao lớn nhất ymax=vo2sin2α2gvo22g

Dấu “=” xảy ra khi

vo2sin2α2g=vo22g ⇔ sin2α = 1 ⇔ α = 90°

Như vậy góc ném α = 90°thì độ cao lớn nhất của vật sẽ đạt giá trị lớn nhất.

d)

Ta có:

g = 9,8 m/s2, v0 = 20, α = 45°

Phương trình quỹ đạo của quả bóng là:

y=-9,82.202.cos245ox2+(tan45o)x=-9,8400x2+x

Quả bóng ở độ cao trên 5 m nghĩa là

y=-9,8400x2+x>5

⇔ 9,8x2 – 400x + 2000 < 0

Xét tam thức f(x) = 9,8x2 – 400x + 2 000 có:

a = 9,8 > 0

∆ = (–400)2 – 4 . 9,8 . 2 000 = 81 600 > 0

f(x) = 0 có hai nghiệm phân biệt: x1 ≈ 34,98; x2 ≈ 5,83

Do đó, 9,8x2 – 400x + 2 000 < 0 ⇔ 5,83 < x < 34,98

Vậy khi quả bóng ở độ cao trên 5 m thì khoảng cách theo phương ngang từ vị trí của quả bóng đến vị trí đá bóng nằm trong khoảng (5,83; 34,98) mét.

Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác: