Mũi tên của bánh xe trong trò chơi Chiếc nón kì diệu có thể dừng lại ở một
Mũi tên của bánh xe trong trò chơi “Chiếc nón kì diệu” có thể dừng lại ở một trong 7 vị trí. Người chơi được quay 3 lần. Xác suất để mũi tên dừng lại ở ba vị trí khác nhau là
Sách bài tập Toán 10 Kết nối tri thức Bài tập cuối chương 9
Bài 9.19 trang 68 Sách bài tập Toán lớp 10 Tập 2: Mũi tên của bánh xe trong trò chơi “Chiếc nón kì diệu” có thể dừng lại ở một trong 7 vị trí. Người chơi được quay 3 lần. Xác suất để mũi tên dừng lại ở ba vị trí khác nhau là
A. 3049;
B. 2950;
C. 35;
D. 711.
Lời giải:
Đáp án đúng là: A
Quay ngẫu nhiên 3 lần, mỗi lần có thể dừng lại ở một trong 7 vị trí.
Do đó, n(Ω) = 7 . 7 . 7 = 343.
Gọi biến cố A: “mũi tên dừng lại ở ba vị trí khác nhau trong 3 lần quay”.
Lần quay thứ nhất có số cách chọn vị trí là: 7
Lần quay thứ hai có số cách chọn vị trí là: 6
Lần quay thứ ba có số cách chọn vị trí là: 5
Số cách để mũi tên dừng lại ở ba vị trí khác nhau là: 7 . 6 . 5 = 210 (cách)
Do đó, n(A) = 210.
Vậy P(A) = n(A)n(Ω)=210343=3049.