Gieo ba con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên


Gieo ba con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên ba con xúc xắc bằng 7.

Sách bài tập Toán 10 Kết nối tri thức Bài tập cuối chương 9

Bài 9.24 trang 69 Sách bài tập Toán lớp 10 Tập 2: Gieo ba con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên ba con xúc xắc bằng 7.

Lời giải:

Số kết quả khi gieo ba con xúc xắc cân đối và đồng chất là: 6 . 6 . 6 = 216.

Do đó, n(Ω) = 216.

Gọi A là biến cố: “Tổng số chấm xuất hiện trên ba con xúc xắc bằng 7”.

A = {(a, b, c): a + b + c = 7} với a, b, c lần lượt là số chấm xuất hiện trên ba con xúc xắc.

Ta có:

(a, b, c) = (1, 1, 5), khi hoán vị ta có 3 cách {(1, 1, 5); (1, 5, 1); (5, 1, 1)}

(a, b, c) = (1, 2, 4), khi hoán vị ta có 6 cách {(1, 2, 4}; (1, 4, 2); (2, 1, 4); (4, 1, 2}; (4, 2, 1); (2, 4, 1)}

(a, b, c) = (1, 3, 3), khi hoán vị ta có 3 cách {(1, 3, 3); (3, 1, 3); (3, 3, 1)}

(a, b, c) = (2, 2, 3), khi hoán vị ta có 3 cách {(3, 2, 2); (2, 3, 2); (2, 2, 3)}

Do đó, n(A) = 3 + 6 + 3 + 3 = 15.

Vậy P(A) = nAnΩ=15216=572.

Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác: