Người ta quan sát một nhóm người trưởng thành trong 5 năm. Ở thời điểm bắt đầu quan sát
Người ta quan sát một nhóm người trưởng thành trong 5 năm. Ở thời điểm bắt đầu quan sát, có 30% số người được quan sát thường xuyên hút thuốc. Sau 5 năm, người ta nhận thấy tỉ lệ tử vong trong số những người thường xuyên hút thuốc cao gấp 3 lần tỉ lệ này trong nhóm những người còn lại. Chọn ngẫu nhiên một người trong nhóm và thấy người này tử vong trong 5 năm quan sát, tính xác suất người đó thường xuyên hút thuốc.
Giải SBT Toán 12 Chân trời sáng tạo Bài tập cuối chương 6
Bài 6 trang 87 SBT Toán 12 Tập 2: Người ta quan sát một nhóm người trưởng thành trong 5 năm. Ở thời điểm bắt đầu quan sát, có 30% số người được quan sát thường xuyên hút thuốc. Sau 5 năm, người ta nhận thấy tỉ lệ tử vong trong số những người thường xuyên hút thuốc cao gấp 3 lần tỉ lệ này trong nhóm những người còn lại. Chọn ngẫu nhiên một người trong nhóm và thấy người này tử vong trong 5 năm quan sát, tính xác suất người đó thường xuyên hút thuốc.
Lời giải:
Gọi A là biến cố “Một người tử vong trong 5 năm quan sát” và B là biến cố “Một người thường xuyên hút thuốc”.
Do thời điểm bắt đầu quan sát, có 30% số người được quan sát thường xuyên hút thuốc nên P(B) = 0,3 và P() = 1 – 0,3 = 0,7.
Gọi tỉ lệ tử vong trong số những người không thường xuyên hút thuốc là a (0 ≤ a ≤ 1).
Do ở thời điểm sau 5 năm, người ta nhận thấy tỉ lệ tử vong trong số những người thường xuyên hút thuốc cao gấp 3 lần tỉ lệ này trong nhóm những người còn lại nên
P(A |) = a và P(A | B) = 3a.
Theo công thức xác suất toàn phần, tỉ lệ một người tử vong trong 5 năm quan sát là:
P(A) = P(B)P(A | B) + P()P(A |) = 0,3.3a + 0,7a = 1,6a.
Theo công thức Bayes, xác suất một người thường xuyên hút thuốc, biết rằng người đó tử vong trong 5 năm quan sát là:
P(B | A) = = 0,5625.
Lời giải SBT Toán 12 Bài tập cuối chương 6 hay khác: