Một người mua 36 bông hoa hồng và hoa cẩm chướng hết tất cả 174 000 đồng. Giá mỗi bông hoa hồng là 5 500 đồng
Một người mua 36 bông hoa hồng và hoa cẩm chướng hết tất cả 174 000 đồng. Giá mỗi bông hoa hồng là 5 500 đồng, giá mỗi bông hoa cẩm chướng là 4 000 đồng. Hỏi người đó đã mua bao nhiêu bông hoa mỗi loại?
Giải sách bài tập Toán 9 Bài tập cuối chương 1 - Chân trời sáng tạo
Bài 14 trang 17 sách bài tập Toán 9 Tập 1: Một người mua 36 bông hoa hồng và hoa cẩm chướng hết tất cả 174 000 đồng. Giá mỗi bông hoa hồng là 5 500 đồng, giá mỗi bông hoa cẩm chướng là 4 000 đồng. Hỏi người đó đã mua bao nhiêu bông hoa mỗi loại?
Lời giải:
Gọi x (bông) và y (bông) lần lượt là số bông hoa hồng và số bông hoa cẩm chướng người đó mua (x ∈ ℕ*, y ∈ ℕ*).
Do người đó mua 36 bông hoa hồng và hoa cẩm chướng nên ta có phương trình:
x + y = 36. (1)
Số tiền mua hoa hồng là: 5 500x (đồng).
Số tiền mua hoa cẩm chướng là: 4 000y (đồng).
Do mua hết tất cả 174 000 đồng nên ta có phương trình:
5 500x + 4 000y = 174 000 hay 11x + 8y = 348. (2)
Từ (1) và (2) ta có hệ phương trình
Nhân hai vế của phương trình (1) với 8, ta được
Trừ từng vế của phương trình thứ hai và phương trình thứ nhất, ta được:
3x = 60, suy ra x = 20.
Thay x = 20 vào phương trình (1), ta được:
20 + y = 36, do đó y = 16.
Ta thấy x = 20, y = 16 thoả mãn điều kiện.
Vậy người đó đã mua 20 bông hoa hồng và 16 bông hoa cẩm chướng.
Lời giải SBT Toán 9 Bài tập cuối chương 1 hay khác:
Bài 1 trang 15 sách bài tập Toán 9 Tập 1: Nghiệm của phương trình (x + 5)(2x – 10) = 0 là ...
Bài 2 trang 15 sách bài tập Toán 9 Tập 1: Điều kiện xác định của phương trình là ...
Bài 3 trang 15 sách bài tập Toán 9 Tập 1: Nghiệm của phương trình là ...
Bài 10 trang 16 sách bài tập Toán 9 Tập 1: Giải các phương trình: (3x + 2)(2x – 5) = 0; ...
Bài 11 trang 16 sách bài tập Toán 9 Tập 1: Giải các phương trình: ...
Bài 12 trang 16 sách bài tập Toán 9 Tập 1: Giải các hệ phương trình: ...