Hai khối hợp kim có tỉ lệ đồng và kẽm khác nhau: Khối thứ nhất có tỉ lệ đồng và kẽm là 8 : 2


Hai khối hợp kim có tỉ lệ đồng và kẽm khác nhau: Khối thứ nhất có tỉ lệ đồng và kẽm là 8 : 2 và khối thứ hai có tỉ lệ đồng và kẽm là 3 : 7, được đưa vào lò để luyện ra khối hợp kim có khối lượng 250 kg và có tỉ lệ đồng và kẽm là 5 : 5. Tính khối lượng mỗi khối hợp kim. (Biết rằng, khối lượng hao hụt và khối lượng các tạp chất không đáng kể.)

Giải sách bài tập Toán 9 Bài tập cuối chương 1 - Chân trời sáng tạo

Bài 18 trang 17 sách bài tập Toán 9 Tập 1: Hai khối hợp kim có tỉ lệ đồng và kẽm khác nhau: Khối thứ nhất có tỉ lệ đồng và kẽm là 8 : 2 và khối thứ hai có tỉ lệ đồng và kẽm là 3 : 7, được đưa vào lò để luyện ra khối hợp kim có khối lượng 250 kg và có tỉ lệ đồng và kẽm là 5 : 5. Tính khối lượng mỗi khối hợp kim. (Biết rằng, khối lượng hao hụt và khối lượng các tạp chất không đáng kể.)

Lời giải:

Gọi x (kg) và y (kg) lần lượt là khối lượng khối hợp kim thứ nhất và khối hợp kim thứ hai (0 < x < 250, 0 < y < 250).

Do khối hợp kim có khối lượng 250 kg nên ta có x + y = 250. (1)

Do khối thứ nhất có tỉ lệ đồng và kẽm là 8 : 2 nên khối lượng đồng chiếm 88+2=810=45 khối lượng khối hợp kim thứ nhất.

Như vậy, khối lượng đồng trong khối kim loại thứ nhất là: 45x (kg).

Do khối thứ hai có tỉ lệ đồng và kẽm là 3 : 7 nên khối lượng đồng chiếm 33+7=310 khối lượng khối hợp kim thứ hai.

Như vậy, khối lượng đồng trong khối kim loại thứ hai là: 310y (kg).

Do trong khối hợp kim mới có tỉ lệ đồng và kẽm là 5 : 5 nên khối lượng đồng chiếm 55+5=510=12  khối lượng khối hợp kim mới.

Như vậy, khối lượng đồng trong khối hợp kim mới là: 12250=125 (kg)

Khi đó, ta có phương trình: 45x+310y=125.    2

Từ (1) và (2) ta có hệ phương trình x+y=250                    145x+310y=125         2

Nhân hai vế của phương trình (1) với 3 và nhân hai vế của phương trình (2) với 10, ta được: 3x+3y=7508x+3y=1  250

Trừ từng vế phương trình thứ hai và phương trình thứ nhất, ta được:

5x = 500, suy ra x = 100.

Thay x = 100 vào phương trình (1), ta được:

100 + y = 250, do đó y = 150.

Ta thấy x = 100, y = 150 thoả mãn điều kiện.

Vậy khối hợp kim thứ nhất có khối lượng 100 kg và khối hợp kim thứ hai có khối lượng 150 kg.

Lời giải SBT Toán 9 Bài tập cuối chương 1 hay khác:

Xem thêm giải sách bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác: