Đường tròn (C) có tâm I (– 2; 3) và đi qua M (2; – 3) có phương trình là: A. ( x + 2 )^2 + ( y - 3 )^2 = căn bậc hai của 5^2 ; B. ( x - 2)^2 + ( y + 3)^2 = 52; C. x^2 + y^2 + 4x - 6y - 57


Câu hỏi:

Đường tròn (C) có tâm I (– 2; 3) và đi qua M (2; – 3) có phương trình là:

A. \[{\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = \sqrt {52} ;\]
B. \[{\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 52;\]
C. \[{x^2} + {y^2} + 4x - 6y - 57 = 0;\]
D. \[{x^2} + {y^2} + 4x - 6y - 39 = 0.\]

Trả lời:

Hướng dẫn giải

Đáp án đúng là: D

Ta có: Bán kính của đường tròn:

R = IM = \[\sqrt {{{\left( {2 + 2} \right)}^2} + {{\left( { - 3 - 3} \right)}^2}} = \sqrt {52} \]

Vậy phương trình đường tròn \[\left( C \right):\left\{ \begin{array}{l}I\left( { - 2;3} \right)\\R = \sqrt {52} \end{array} \right.\]là: (x + 2)2 + (y – 3)2 = 52

hay x2 + y2 + 4x – 6y – 39 = 0.

Xem thêm bài tập Toán 10 CD có lời giải hay khác:

Câu 1:

Tọa độ tâm I và bán kính R của đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 25\] là:

Xem lời giải »


Câu 2:

Cho đường tròn \[\left( C \right):{x^2} + {\left( {y + 4} \right)^2} = 4\]có tọa độ tâm I(a; b) và bán kính R = c. Nhận xét nào sau đây đúng về a, b và c:

Xem lời giải »


Câu 3:

Cho phương trình x2 + y2 – 2ax – 2by + c = 0. Điều kiện của a, b, c để phương trình đã cho là phương trình đường tròn:

Xem lời giải »


Câu 4:

Tọa độ tâm I và bán kính R của đường tròn (C): x2 + y2 = 16 là:

Xem lời giải »


Câu 5:

Đường tròn đường kính AB với A (3; – 1), B (1; – 5) có phương trình là:

Xem lời giải »


Câu 6:

Phương trình tiếp tuyến d của đường tròn (C): (x + 2)2 + (y + 2)2 = 9 tại điểm M (2; 1) là:

Xem lời giải »


Câu 7:

Cho đường tròn (C): (x – 1)2 + (y + 2)2 = 2. Viết phương trình tiếp tuyến d của (C) biết đường d song song với đường thẳng d’: x + y + 3 = 0.

Xem lời giải »


Câu 8:

Phương trình tiếp tuyến d của đường tròn (C): x2 + y2 – 3x – y = 0 tại điểm N(1; 1) là:

Xem lời giải »