X

Toán lớp 10 Chân trời sáng tạo

∆ABC có AB = 5, AC = 8 và góc BAC = 60^0. Bán kính r của đường tròn nội tiếp ∆ABC bằng: A. 1; B. 2; C. căn bậc hai của 3 ; D. 2 căn bậc hai của 3 .


Câu hỏi:

∆ABC có AB = 5, AC = 8 và \(\widehat {BAC} = 60^\circ \). Bán kính r của đường tròn nội tiếp ∆ABC bằng:

A. 1;
B. 2;
C. \(\sqrt 3 \);
D. \(2\sqrt 3 \).

Trả lời:

Hướng dẫn giải

Đáp án đúng là: C

Áp dụng định lí côsin cho DABC, ta có:

BC2 = AB2 + AC2 – 2.AB.AC.cosA

= 52 + 82 – 2.5.8.cos60°

= 49.

Suy ra BC = \(\sqrt {49} = 7\).

Diện tích ∆ABC là:

\(S = \frac{1}{2}AB.AC.\sin A = \frac{1}{2}.5.8.\sin 60^\circ = 10\sqrt 3 \) (đơn vị diện tích)

Nửa chu vi của ∆ABC là:

\(p = \frac{{AB + AC + BC}}{2} = \frac{{5 + 8 + 7}}{2} = 10\).

Ta có S = pr

\( \Leftrightarrow r = \frac{S}{p} = \frac{{10\sqrt 3 }}{{10}} = \sqrt 3 \).

Vậy bán kính r của đường tròn nội tiếp của ∆ABC bằng \(\sqrt 3 \).

Do đó ta chọn phương án C.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

∆ABC có a = 21, b = 17, c = 10. Diện tích của tam giác ABC bằng:

Xem lời giải »


Câu 2:

∆ABC có a = 5, b = 6, c = 7. Bán kính r của đường tròn nội tiếp ∆ABC bằng:

Xem lời giải »


Câu 3:

∆ABC có AB = 3, AC = 6 và \(\widehat A = 60^\circ \). Độ dài bán kính R của đường tròn ngoại tiếp ∆ABC bằng:

Xem lời giải »


Câu 4:

∆ABC đều cạnh a nội tiếp trong đường tròn bán kính R. Khi đó bán kính R bằng:

Xem lời giải »


Câu 5:

Tam giác đều nội tiếp đường tròn bán kính R = 4 cm có diện tích bằng:

Xem lời giải »