Bài 3 trang 125 Toán 10 Tập 1 Chân trời sáng tạo
Hãy tìm độ lệch chuẩn, khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu sau:
Giải Toán lớp 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
Bài 3 trang 125 Toán lớp 10 Tập 1: Hãy tìm độ lệch chuẩn, khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu sau:
a)
Giá trị |
– 2 |
– 1 |
0 |
1 |
2 |
Tần suất |
10 |
20 |
30 |
20 |
10 |
b)
Giá trị |
0 |
1 |
2 |
3 |
4 |
Tần suất |
0,1 |
0,2 |
0,4 |
0,2 |
0,1 |
Lời giải:
a) Cỡ mẫu n = 10 + 20 + 30 + 20 + 10 = 90.
Số trung bình: .
Phương sai mẫu số liệu là:
S2 = [10 . (– 2)2 + 20 . (– 1)2 + 30 . 02 + 20 . 12 + 10 . 22] – 02 = .
Độ lệch chuẩn mẫu số liệu là:
S = .
Sắp xếp các số liệu của mẫu theo thứ tự không giảm, ta được:
– 2; – 2; – 2; – 2 ; – 2; – 2; – 2; – 2; – 2; – 2; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 2; 2; 2; 2; 2; 2; 2; 2; 2.
Khoảng biến thiên của mẫu số liệu là: R = 2 – (– 2) = 4.
Vì cỡ mẫu là 90 là số chẵn nên tứ phân vị thứ hai là Q2 = 0.
Tứ phân vị thứ nhất là trung vị của mẫu: – 2; – 2; – 2; – 2 ; – 2; – 2; – 2; – 2; – 2; – 2; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0. Do đó Q1 = – 1.
Tứ phân vị thứ ba là trung vị của mẫu: 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 2; 2; 2; 2; 2; 2; 2; 2; 2. Do đó Q3 = 1.
Khoảng tứ phân vị là ∆Q = 1 – (– 1) = 2.
b) Số trung bình: = 0,1 . 0 + 0,2 . 1 + 0,4 . 2 + 0,2 . 3 + 0,1 . 4 = 2.
Phương sai mẫu số liệu là:
S2 = (0,1 . 02 + 0,2 . 12 + 0,4 . 22 + 0,2 . 32 + 0,1 . 42) – 22 = 1,2.
Độ lệch chuẩn mẫu số liệu là:
S = .
Giả sử cỡ mẫu là 10. Khi đó:
Tần số của giá trị 0 là 0,1 . 10 = 1.
Tần số của giá trị 1 là 0,2 . 10 = 2.
Tần số của giá trị 2 là 0,4 . 10 = 4.
Tần số của giá trị 3 là 0,2 . 10 = 2.
Tần số của giá trị 4 là 0,1 . 1 = 1.
Sắp xếp các số liệu của mẫu theo thứ tự không giảm, ta được:
0; 1; 1; 2; 2; 2; 2; 3; 3; 4.
Khoảng biến thiên của mẫu số liệu là R = 4 – 0 = 4.
Vì cỡ mẫu là số chẵn nên tứ phân vị thứ hai là Q2 = 2.
Tứ phân vị thứ nhất là trung vị của mẫu: 0; 1; 1; 2; 2. Do đó Q1 = 1.
Tứ phân vị thứ ba là trung vị của mẫu: 2; 2; 3; 3; 4. Do đó Q3 = 3.
Khoảng tứ phân vị là: ∆Q = 3 – 1 = 2.
Lời giải bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu hay, chi tiết khác: