X

Toán lớp 10 Chân trời sáng tạo

Cho ∆ABC có a = 2 căn bậc hai của 3 ,b = 2 căn bậc hai của 2 ,c = căn bậc hai của 6  - căn bậc hai của 2. Góc lớn nhất của ∆ABC bằng: A. 80°; B. 90°; C. 120°; D. 150°.


Câu hỏi:

Cho ∆ABC có \(a = 2\sqrt 3 ,\,\,b = 2\sqrt 2 ,\,\,c = \sqrt 6 - \sqrt 2 \). Góc lớn nhất của ∆ABC bằng:
A. 80°;
B. 90°;
C. 120°;
D. 150°.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: C

\(\sqrt 6 - \sqrt 2 < 2\sqrt 2 < 2\sqrt 3 \) nên c < b < a.

Do đó \(\widehat C < \widehat B < \widehat A\).

Tức là, \(\widehat A\) lớn nhất.

Theo hệ quả định lí côsin, ta có:

\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{{\left( {2\sqrt 2 } \right)}^2} + {{\left( {\sqrt 6 - \sqrt 2 } \right)}^2} - {{\left( {2\sqrt 3 } \right)}^2}}}{{2.2\sqrt 2 .\left( {\sqrt 6 - \sqrt 2 } \right)}} = - \frac{1}{2}\).

Suy ra \(\widehat A = 120^\circ \).

Vậy ta chọn phương án C.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Cho ∆ABC biết b = 32, c = 45, \[\widehat A = 87^\circ \]. Khẳng định nào sau đây đúng?

Xem lời giải »


Câu 2:

Cho ∆ABC biết \(\widehat A = 60^\circ ,\,\,\widehat B = 40^\circ \), c = 14. Khẳng định nào sau đây sai?

Xem lời giải »


Câu 3:

Cho ∆ABC biết \(a = \sqrt 6 \), b = 2, \(c = 1 + \sqrt 3 \). Khẳng định nào sau đây đúng nhất?

Xem lời giải »


Câu 4:

Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?

Xem lời giải »


Câu 5:

Cho ∆ABC. Khẳng định nào sau đây đúng?

Xem lời giải »


Câu 6:

Cho ∆ABC thỏa mãn sinC = 2sinB.cosA. Khi đó ∆ABC là:

Xem lời giải »