X

Toán lớp 10 Chân trời sáng tạo

Cho ∆ABC có a.sinA + b.sinB + c.sinC = ha + hb + hc. Khi đó ∆ABC là: A. Tam giác cân; B. Tam giác đều; C. Tam giác thường; D. Tam giác vuông.


Câu hỏi:

Cho ∆ABC có a.sinA + b.sinB + c.sinC = ha + hb + hc. Khi đó ∆ABC là:

A. Tam giác cân;
B. Tam giác đều;
C. Tam giác thường;
D. Tam giác vuông.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: B

Diện tích ∆ABC là: \(S = \frac{1}{2}a.{h_a} = \frac{1}{2}b.{h_b} = \frac{1}{2}c.{h_c}\).

Suy ra \({h_a} = \frac{{2S}}{a};\,\,{h_b} = \frac{{2S}}{b};\,\,{h_c} = \frac{{2S}}{c}\).

Diện tích ∆ABC là:

\(S = \frac{1}{2}bc.\sin A = \frac{1}{2}ac.\sin B = \frac{1}{2}ab.\sin C\).

Suy ra \(\sin A = \frac{{2S}}{{bc}};\,\,\sin B = \frac{{2S}}{{ac}};\,\,\sin C = \frac{{2S}}{{ab}}\).

Ta có a.sinA + b.sinB + c.sinC = ha + hb + hc

\( \Leftrightarrow a.\frac{{2S}}{{bc}} + b.\frac{{2S}}{{ac}} + c.\frac{{2S}}{{ab}} = \frac{{2S}}{a} + \frac{{2S}}{b} + \frac{{2S}}{c}\)

\( \Leftrightarrow 2S.\left( {\frac{a}{{bc}} + \frac{b}{{ac}} + \frac{c}{{ab}}} \right) = 2S.\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right)\)

\( \Leftrightarrow \frac{a}{{bc}} + \frac{b}{{ac}} + \frac{c}{{ab}} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\)

\( \Leftrightarrow \frac{{{a^2} + {b^2} + {c^2}}}{{abc}} = \frac{{bc + ac + ab}}{{abc}}\)

a2 + b2 + c2 = bc + ac + ab

2a2 + 2b2 + 2c2 = 2bc + 2ac + 2ab

(a2 – 2ab + b2) + (a2 – 2ac + c2) + (b2 – 2bc + c2) = 0

(a – b)2 + (a – c)2 + (b – c)2 = 0

\( \Leftrightarrow \left\{ \begin{array}{l}a - b = 0\\a - c = 0\\b - c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = b\\a = c\\b = c\end{array} \right.\)

a = b = c.

Vậy ∆ABC là tam giác đều.

Do đó ta chọn phương án B.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Cho ∆ABC thỏa mãn sin2A = sinB.sinC. Khẳng định nào sau đây đúng nhất?

Xem lời giải »


Câu 2:

Cho ∆ABC thỏa mãn \[\sin A = \frac{{\sin B + \sin C}}{{\cos B + \cos C}}\]. Khi đó ∆ABC là:

Xem lời giải »


Câu 3:

Cho ∆ABC biết \(\frac{{{{\cos }^2}A + {{\cos }^2}B}}{{{{\sin }^2}A + {{\sin }^2}B}} = \frac{1}{2}\left( {{{\cot }^2}A + {{\cot }^2}B} \right)\). Khi đó ∆ABC là:

Xem lời giải »


Câu 4:

Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C.

Media VietJack

Người ta đo được khoảng cách AB = 40 m, BC = 70 m, \(\widehat {CAB} = 45^\circ \). Vậy sau khi đo đạc và tính toán, ta được khoảng cách AC gần nhất với giá trị nào sau đây?

Xem lời giải »


Câu 5:

Từ vị trí A, người ta quan sát một cái cây cao mọc vuông góc với mặt đất như hình vẽ.

Media VietJack

Biết vị trí quan sát cách mặt đất một khoảng AH = 4 m và khoảng cách từ chân đường vuông góc của vị trí quan sát A trên mặt đất tới gốc cây là HB = 20 m, \(\widehat {BAC} = 45^\circ \). Chiều cao của cây gần nhất với giá trị nào sau đây?

Xem lời giải »


Câu 6:

Giả sử CD = h là chiều cao của tháp, trong đó C là chân tháp.

Media VietJack

Một người đứng tại vị trí A (\(\widehat {CAD} = 63^\circ ),\) không sang được bờ bên kia để đo chiều cao h của tháp nên chọn thêm một điểm B (ba điểm A, B, C thẳng hàng) cách A một khoảng 24 m và \[\widehat {CBD} = 48^\circ \] để tính toán được chiều cao của tháp. Chiều cao h của tháp gần nhất với:

Xem lời giải »