Cho bốn điểm phân biệt A, B, C, D thỏa mãn ABCD là hình thang cân và vecto CD = 2 vecto BA
Câu hỏi:
Cho bốn điểm phân biệt A, B, C, D thỏa mãn ABCD là hình thang cân và , I là giao điểm của AD và BC. Khẳng định nào sau đây sai?
Trả lời:
Đáp án đúng là: D
Vì nên CD = 2AB và CD song song với AB. Do đó phương án B đúng.
Do CD = 2AB và CD song song với AB nên CD là đáy lớn và AB là đáy nhỏ của hình thang cân.
Khi đó I là giao điểm của AD và BC nên nằm ngoài hình thang cân.
Do đó phương án A đúng.
Xét DIDC có AB // CD nên ta có:
Mà AD = BC (tính chất hình thang cân)
Do đó IA = AD = IB = BC = ID = IC nên phương án C đúng.
Ta có suy ra CI = 2BI. Do đó phương án D là sai.
Vậy ta chọn phương án D.