Có 4 hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau
Câu hỏi:
Có 4 hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có ai là:
A.
B.
C.
D.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Không gian mẫu của phép thử trên là số cách xếp 4 hành khách lên 4 toa tàu.
Vì chọn mỗi hành khách có 4 cách chọn toa nên ta có 44 cách xếp.
Suy ra số phần tử của không gian mẫu là n(Ω) = 44.
Gọi biến cố A: “1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có ai”.
Để tìm số phần tử của biến cố A, ta chia thành hai giai đoạn như sau:
Giai đoạn 1: Chọn 3 hành khách trong số 4 hành khách và chọn 1 toa trong số 4 toa.
Sau đó xếp lên toa đó 3 hành khách vừa chọn.
Khi đó ta có cách.
Giai đoạn 2: Chọn 1 toa trong số 3 toa còn lại và xếp 1 hành khách còn lại lên toa đó.
Suy ra có cách. Hiển nhiên khi đó 2 toa còn lại sẽ không có hành khách nào.
Theo quy tắc nhân, ta có n(A) = .
Vậy xác suất của biến cố A là: .
Ta chọn phương án B.