Miền nghiệm của hệ bất phương trình x + y - 2 lớn hơn bằng 0; x + 2y + 1 nhỏ hơn bằng 0 là miền chứa điểm nào sau đây? A. M(0; 1); B. N(8; –5); C. P(1; 2); D. Q(–2; 0).
Câu hỏi:
Miền nghiệm của hệ bất phương trình là miền chứa điểm nào sau đây?
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
• Xét điểm M(0; 1):
Ta có: \(\left\{ \begin{array}{l}0 + 1 - 2 = - 1 < 0\\0 + 2.1 + 1 = 3 > 0\end{array} \right.\)
Do đó cặp số (0; 1) không thỏa mãn đồng thời cả hai bất phương trình của hệ đã cho.
Vậy miền nghiệm của hệ bất phương trình không chứa điểm M(0; 1).
• Xét điểm N(8; –5):
Ta có: \(\left\{ \begin{array}{l}8 + \left( { - 5} \right) - 2 = 1 \ge 0\\8 + 2.\left( { - 5} \right) + 1 = - 1 \le 0\end{array} \right.\)
Do đó cặp số (8; –5) thỏa mãn đồng thời cả hai bất phương trình của hệ đã cho.
Vậy miền nghiệm của hệ bất phương trình chứa điểm N(8; –5).
• Xét điểm P(1; 2):
Ta có: \(\left\{ \begin{array}{l}1 + 2 - 2 = 1 \ge 0\\1 + 2.2 + 1 = 6 > 0\end{array} \right.\)
Do đó cặp số (1; 2) không thỏa mãn đồng thời cả hai bất phương trình của hệ đã cho.
Vậy miền nghiệm của hệ bất phương trình không chứa điểm P(1; 2).
• Xét điểm Q(–2; 0):
Ta có: \(\left\{ \begin{array}{l} - 2 + 0 - 2 = - 4 < 0\\ - 2 + 2.0 + 1 = - 1 \le 0\end{array} \right.\)
Do đó cặp số (–2; 0) không thỏa mãn đồng thời cả hai bất phương trình của hệ đã cho.
Vậy miền nghiệm của hệ bất phương trình không chứa điểm Q(–2; 0).
Ta chọn phương án B.