Trong các cặp số (x; y) sau, cặp số không là nghiệm của hệ bất phương trình { x + y - 2 nhỏ hơn hoặc bằng 0; 2x - 3y + 2 > 0 là: A. (–1; –1); B. (1; 1); C. (–1; 1); D. (0; 0).
Câu hỏi:
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
• Xét điểm (–1; –1):
Ta có: \(\left\{ \begin{array}{l} - 1 + \left( { - 1} \right) - 2 = - 4 \le 0\\2.\left( { - 1} \right) - 3.\left( { - 1} \right) + 2 = 3 > 0\end{array} \right.\)
Do đó cặp số (–1; –1) thỏa mãn đồng thời cả hai bất phương trình của hệ đã cho.
Vậy cặp số (–1; –1) là nghiệm của hệ bất phương trình đã cho.
• Xét điểm (1; 1):
Ta có: \(\left\{ \begin{array}{l}1 + 1 - 2 = 0 \le 0\\2.1 - 3.1 + 2 = 1 > 0\end{array} \right.\)
Do đó cặp số (1; 1) thỏa mãn đồng thời cả hai bất phương trình của hệ đã cho.
Vậy cặp số (1; 1) là nghiệm của hệ bất phương trình đã cho.
• Xét điểm (–1; 1):
Ta có: \(\left\{ \begin{array}{l} - 1 + 1 - 2 = - 2 \le 0\\2.\left( { - 1} \right) - 3.1 + 2 = - 3 < 0\end{array} \right.\)
Do đó cặp số (–1; 1) không thỏa mãn đồng thời cả hai bất phương trình của hệ đã cho.
Vậy cặp số (–1; 1) là không nghiệm của hệ bất phương trình đã cho.
• Xét điểm (0; 0):
Ta có: \(\left\{ \begin{array}{l}0 + 0 - 2 = - 2 \le 0\\2.0 - 3.0 + 2 = 2 > 0\end{array} \right.\)
Do đó cặp số (0; 0) thỏa mãn đồng thời cả hai bất phương trình của hệ đã cho.
Vậy cặp số (0; 0) là nghiệm của hệ bất phương trình đã cho.
Ta chọn phương án C.