X

Toán lớp 10 Chân trời sáng tạo

Phương trình: a + căn bậc hai (4 - x^2) 2 + 3x căn bậc hai (4 - x^2) có bao nhiêu


Câu hỏi:

Phương trình: \[x + \sqrt {4 - {x^2}} = 2 + 3x\sqrt {4 - {x^2}} \] có bao nhiêu nghiệm lớn hơn hoặc bằng 0:

A. 0;

B. 1;

C. 2;

D. 3.

Trả lời:

Đáp án đúng là: A

Điều kiện: –2 ≤ x ≤ 2

\[x + \sqrt {4 - {x^2}} = 2 + 3x\sqrt {4 - {x^2}} \]

\( \Leftrightarrow \sqrt {(2 - x)(2 + x)} = 2 - x + 3x\sqrt {(2 - x)(2 + x)} \)

\[ \Leftrightarrow \sqrt {2 - x} \left( {\sqrt {2 - x} + \left( {3x - 1} \right)\sqrt {2 + x} } \right) = 0\]

\[ \Leftrightarrow \left[ \begin{array}{l}x = 2\\2 - x = \left( {2 + x} \right){\left( {1 - 3x} \right)^2}(*)\end{array} \right.\]

Giải phương trình (*)

2 – x = (2 + x)(1 – 6x + 9x2)

\( \Rightarrow \) x(9x2 + 12x – 10) = 0

\( \Rightarrow \) x = 0; x = \(\frac{{ - 2 + \sqrt {14} }}{3}\) hoặc x = \(\frac{{ - 2 - \sqrt {14} }}{3}\)

Kết hợp điều kiện được ba nghiệm thỏa mãn là: x = 0; x = 2 ; x = \(\frac{{ - 2 - \sqrt {14} }}{3}\).

Vậy phương trình có 2 nghiệm lớn hơn hoặc bằng 0.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Tập nghiệm của phương trình: \[\sqrt {3 - x + {x^2}} - \sqrt {2 + x - {x^2}} = 1\] là:

Xem lời giải »


Câu 2:

Phương trình: \[\sqrt {{x^2} + x + 4} + \sqrt {{x^2} + x + 1} = \sqrt {2{x^2} + 2x + 9} \] có tích các nghiệm là:

Xem lời giải »


Câu 3:

Phương trình:\(\sqrt { - {x^2} + 6x - 5} = 8 - 2x\) có nghiệm là:

Xem lời giải »


Câu 4:

Phương trình: \[\sqrt {x + 2} = 4 - x\] có bao nhiêu nghiệm

Xem lời giải »


Câu 5:

Số nghiệm của phương trình: \[\sqrt {x + 8 - 2\sqrt {x + 7} } = 2 - \sqrt {x + 1 - \sqrt {x + 7} } \] là:

Xem lời giải »


Câu 6:

Nghiệm của phương trình \[\sqrt {5{x^2} - 6x - 4} = 2(x - 1)\]

Xem lời giải »


Câu 7:

Số nghiệm của phương trình\[\sqrt {{x^2} + 5} = {x^2} - 1\]

Xem lời giải »


Câu 8:

Nghiệm của phương trình \[\sqrt {{x^2} - 4x - 12} = x - 4\]

Xem lời giải »