X

Toán lớp 10 Chân trời sáng tạo

Trên nóc một tòa nhà có một cột ăng-ten cao 5 m. Từ vị trí quan sát A cao 7 m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 50° và 40° so với phương nằm ngang.


Câu hỏi:

Trên nóc một tòa nhà có một cột ăng-ten cao 5 m. Từ vị trí quan sát A cao 7 m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 50° và 40° so với phương nằm ngang.

Media VietJack

Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?

A. 12 m;
B. 19 m;
C. 24 m;
D. 29 m.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: B

Ta có ^BAC+^CAD=^BAD=50

Do đó ^BAC=50^CAD=5040=10.

∆ABD có: ^ABD+^BAD+^ADB=180 (định lí tổng ba góc trong một tam giác)

^ABD=180(^BAD+^ADB)=180(50+90)=40.

Áp dụng định lí sin cho ∆ABC, ta được ACsin^ABC=BCsin^BAC

Suy ra AC=BC.sin^ABCsin^BAC=5.sin40sin1018,5 (m)

∆ACD vuông tại D: sin^CAD=CDAC.

Suy ra CD=AC.sin^CAD18,5.sin4011,9 (m)

Chiều cao của tòa nhà là:

CH = CD + DH = 11,9 + 7 = 18,9 (m)

Giá trị này gần với 19 m nhất.

Vậy ta chọn phương án B.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Cho biết tanα = –3 (0° ≤ α ≤ 180°). Giá trị của H=6sinα7cosα6cosα+7sinα bằng:

Xem lời giải »


Câu 2:

Cho biết sinα – cosα = 15(0° ≤ α, β ≤ 180°). Giá trị của E=sin4α+cos4α bằng:

Xem lời giải »


Câu 3:

Cho biết 2cosα+2sinα=2, với 0° < α < 90°. Giá trị của cotα bằng:

Xem lời giải »


Câu 4:

Cho ∆ABC và các khẳng định sau:

(I) b2 – c2 = a(b.cosC – c.cosB);

(II) (b + c)sinA = a(sinB + sinC);

(III) ha = 2R.sinB.sinC;

(IV) S = R.r.(sinA + sinB + sin C);

Số khẳng định đúng là:

Xem lời giải »


Câu 5:

Từ hai vị trí A và B của một tòa nhà, người ta quan sát được đỉnh C của ngọn núi. Biết rằng độ cao của tòa nhà là AB = 70 m, phương nhìn AC tạo với phương ngang AH một góc bằng 30°, phương nhìn BC tạo với phương ngang BD một góc bằng 15°30’.

Media VietJack

Ngọn núi đó có độ cao so với mặt đất gần nhất với giá trị nào sau đây?

Xem lời giải »