Bài 7.18 trang 47 Toán 10 Tập 2 - Kết nối tri thức
Chuyển động của một vật thể trong khoảng thời gian 180 phút được thể hiện trong mặt phẳng tọa độ. Theo đó, tại thời điểm t (0 ≤ t ≤ 180) vật thể ở vị trí có tọa độ (2 + sint°; 4 + cost°).
Giải Toán lớp 10 Bài 21: Đường tròn trong mặt phẳng tọa độ
Bài 7.18 trang 47 Toán 10 Tập 2: Chuyển động của một vật thể trong khoảng thời gian 180 phút được thể hiện trong mặt phẳng tọa độ. Theo đó, tại thời điểm t (0 ≤ t ≤ 180) vật thể ở vị trí có tọa độ (2 + sint°; 4 + cost°).
a) Tìm vị trí ban đầu và vị trí kết thúc của vật thể.
b) Tìm quỹ đạo chuyển động của vật thể.
Lời giải:
a) Vị trí ban đầu của vật thể là tại thời điểm t = 0, nên tọa độ của điểm ở vị trí này là:
(2 + sin0°; 4 + cos0°) = (2; 5).
Vị trí kết thúc của vật thể là tại thời điểm t = 180, nên tọa độ của điểm ở vị trí này là:
(2 + sin 180°; 4 + cos 180°) = (2; 3).
b) Gọi điểm M(x; y) thuộc vào quỹ đạo chuyển động của vật thể.
Ta có: x = 2 + sin t°và y = 4 + cost°.
Suy ra: x – 2 = sin t° và y – 4 = cost°.
Mà sin2 t° + cos2 t° = 1 (0 ≤ t ≤ 180)
Do đó ta có: (x – 2)2 + (y – 4)2 = 1.
Vậy quỹ đạo chuyển động của vật thể là đường tròn có tâm I(2; 4) và bán kính R = 1.
Lời giải bài tập Toán 10 Bài 21: Đường tròn trong mặt phẳng tọa độ hay, chi tiết khác: