Luyện tập 2 trang 44 Toán 10 Tập 2 - Kết nối tri thức
Hãy cho biết phương trình nào dưới đây là phương trình của một đường tròn. Tìm tâm và bán kính của đường tròn đó.
Giải Toán lớp 10 Bài 21: Đường tròn trong mặt phẳng tọa độ
Luyện tập 2 trang 44 Toán 10 Tập 2: Hãy cho biết phương trình nào dưới đây là phương trình của một đường tròn. Tìm tâm và bán kính của đường tròn đó.
a) x2 – y2 – 2x + 4y – 1 = 0;
b) x2 + y2 – 2x + 4y + 6 = 0;
c) x2 + y2 + 6x – 4y + 2 = 0.
Lời giải:
a) Phương trình x2 – y2 – 2x + 4y – 1 = 0 không có dạng x2 + y2 – 2ax – 2by + c = 0 nên đây không phải là phương trình đường tròn.
b) Ta có: x2 + y2 – 2x + 4y + 6 = 0
⇔ x2 + y2 – 2 . 1 . x – 2 . (– 2) . y + 6 = 0.
Có các hệ số a = 1, b = – 2, c = 6.
Ta có: a2 + b2 – c = 12 + (– 2)2 – 6 = – 1 < 0.
Vậy phương trình b) không phải là phương trình đường tròn.
c) x2 + y2 + 6x – 4y + 2 = 0
⇔ x2 + y2 – 2 . (– 3) . x – 2 . 2 y + 2 = 0.
Có các hệ số a = – 3, b = 2, c = 2.
Ta có: a2 + b2 – c = (– 3)2 + 22 – 2 = 11 > 0.
Do đó phương trình c) là phương trình đường tròn có tâm I(– 3; 2) và bán kính R = .
Lời giải bài tập Toán 10 Bài 21: Đường tròn trong mặt phẳng tọa độ hay, chi tiết khác: