HĐ4 trang 40 Toán 10 Tập 2 - Kết nối tri thức
Cho điểm M(x; y) và đường thẳng ∆: ax + by + c = 0 có vectơ pháp tuyến . Gọi H là hình chiếu vuông góc của M trên ∆ (H.7.9).
Giải Toán lớp 10 Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách
HĐ4 trang 40 Toán 10 Tập 2: Cho điểm M(x0; y0) và đường thẳng ∆: ax + by + c = 0 có vectơ pháp tuyến . Gọi H là hình chiếu vuông góc của M trên ∆ (H.7.9).
a) Chứng minh rằng .
b) Giả sử H có tọa độ (x1; y1). Chứng minh rằng: = a(x0 – x1) + b(y0 – y1) = ax0 + by0 + c.
c) Chứng minh rằng .
Lời giải:
a) Do H là hình chiếu của M lên ∆ nên MH ⊥ ∆.
Vectơ là vectơ pháp tuyến của ∆ nên giá của vectơ vuông góc với ∆.
Khi đó đường thẳng MH song song hoặc trùng với giá của vectơ nên hai vectơ và cùng phương.
Do đó hai vectơ và cùng hướng hoặc ngược hướng.
+) Nếu hai vectơ và cùng hướng thì .
+) Nếu hai vectơ và ngược hướng thì .
Vậy .
b) Vì H thuộc ∆ nên tọa độ của H thỏa mãn phương trình ∆, thay tọa độ của H vào phương trình ∆ ta được: ax1 + by1 + c = 0 ⇔ c = – ax1 – by1 (1).
Ta lại có: .
Suy ra: = ax0 + by0 – ax1 – by1 (2).
Từ (1) và (2) suy ra : = ax0 + by0 + c.
c) Theo câu a) ta có: .
Theo câu b) ta có: = ax0 + by0 + c.
Suy ra: |ax0 + by0 + c| = .
Vậy .
Lời giải bài tập Toán 10 Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách hay, chi tiết khác:
Luyện tập 1 trang 37 Toán 10 Tập 2: Xét vị trí tương đối giữa các cặp đường thẳng sau ....
Luyện tập 3 trang 39 Toán 10 Tập 2: Tính góc giữa hai đường thẳng và ....
Luyện tập 4 trang 39 Toán 10 Tập 2: Cho đường thẳng ∆: y = ax + b với a ≠ 0 ....
Luyện tập 5 trang 40 Toán 10 Tập 2: Tính khoảng cách từ điểm M(1; 2) đến đường thẳng ....
Bài 7.7 trang 41 Toán 10 Tập 2: Xét vị trí tương đối giữa các cặp đường thẳng sau: ∆1:....
Bài 7.8 trang 41 Toán 10 Tập 2: Tính góc giữa các cặp đường thẳng sau: ....