Bài 3 trang 31 Toán 11 Tập 1 Cánh diều


Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:

Giải Toán 11 Bài 3: Hàm số lượng giác và đồ thị - Cánh diều

Bài 3 trang 31 Toán 11 Tập 1: Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:

a) y = sinx trên khoảng 9π2;7π2,21π2;23π2;

b) y = cosx trên khoảng (‒20π; ‒19π), (‒9π; ‒8π).

Lời giải:

a) Xét hàm số y = sinx:

Do 9π2;7π2=π24π;π24π nên hàm số y = sinx đồng biến trên khoảng 9π2;7π2.

Do 21π2;23π2=π2+10π;3π2+10π nên hàm số y = sinx nghịch biến trên khoảng 21π2;23π2.

b) Xét hàm số y = cosx:

Do (‒20π; ‒19π) = (0 ‒20π; π ‒ 20π) nên hàm số y = cosx nghịch biến trên khoảng (‒20π; ‒19π).

Do (‒9π; ‒8π) = (‒π – 8π; 0 ‒ 8π) nên hàm số y = cosx đồng biến trên khoảng (‒9π; ‒8π).

Lời giải bài tập Toán 11 Bài 3: Hàm số lượng giác và đồ thị hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác: