Bài 6 trang 31 Toán 11 Tập 1 Cánh diều
Một dao động điều hoà có phương trình li độ dao động là: x = Acos(ωt + φ), trong đó t là thời gian tính bằng giây, A là biên độ dao động và x là li độ dao động đều được tính bằng centimét. Khi đó, chu kì T của dao động là T=. Xác định giá trị của li độ khi t = 0, , t = T và vẽ đồ thị biểu diễn li độ của dao động điều hoà trên đoạn [0; 2T] trong trường hợp:
Giải Toán 11 Bài 3: Hàm số lượng giác và đồ thị - Cánh diều
Bài 6 trang 31 Toán 11 Tập 1: Một dao động điều hoà có phương trình li độ dao động là: x = Acos(ωt + φ), trong đó t là thời gian tính bằng giây, A là biên độ dao động và x là li độ dao động đều được tính bằng centimét. Khi đó, chu kì T của dao động là T=. Xác định giá trị của li độ khi t = 0, , t = T và vẽ đồ thị biểu diễn li độ của dao động điều hoà trên đoạn [0; 2T] trong trường hợp:
a) A = 3 cm, φ = 0;
b) A = 3 cm, ;
c) A = 3 cm, .
Lời giải:
Từ T = ta có .
Khi đó ta có phương trình li độ là x = Acos.
a)
‒ Với A = 3 cm và φ = 0 thay vào phương trình li độ x = Acos ta có:
x = 3cos.
• t = 0 thì x = 3cos0 = 3;
• t = thì x = 3cos= 3cos = 0;
• t = thì x = 3cos = 3cos = -3
• t = thì x = 3cos = 3cos = 0;
• t = T thì x = 3cos = 3cos2 = 3
‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà x = 3cos trên đoạn [0; 2T]:
Xét hàm số x = 3cos có chu kì là T.
Ta vẽ đồ thị hàm số x = 3cos trên đoạn [0; T] theo bảng sau:
Bằng cách dịch chuyển đồ thị hàm số x = 3cos trên đoạn [0; T] song song với trục hoành sang phải theo đoạn có độ dài T, ta sẽ nhận được đồ thị hàm số x = 3cos trên đoạn [T; 2T].
Từ đó ta vẽ được đồ thị biểu diễn li độ của dao động điều hoà x = 3cos trên đoạn [0; 2T] như sau:
b)
‒ Với A = 3 cm và thay vào phương trình li độ x = Acos ta có:
x = 3cos = 3cos = 3sin
• t = 0 thì x = 3sin = 3sin0 = 0
• t = thì x = 3sin = 3sin = 3;
• t = thì x = 3sin = 3sin = 0;
• t = thì x = 3sin = 3sin = -3;
• t = T thì x = 3sin = 3sin2 = 0.
‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà x = 3sin trên đoạn [0; 2T]:
Xét hàm số x = 3sin có chu kì là T.
Ta vẽ đồ thị hàm số x = 3sin trên đoạn [0; T] theo bảng sau:
Bằng cách dịch chuyển đồ thị hàm số x = 3sin trên đoạn [0; T] song song với trục hoành sang phải theo đoạn có độ dài T, ta sẽ nhận được đồ thị hàm số x = 3sin trên đoạn [T; 2T].
Từ đó ta vẽ được đồ thị biểu diễn li độ của dao động điều hoà x = 3sin trên đoạn [0; 2T] như sau:
c)
‒ Với A = 3 cm và thay vào phương trình li độ x = Acos ta có:
x = 3cos = -3cos
= -3cos = -3sin
• t = 0 thì x = -3sin = -3sin0 = 0
• t = thì x = -3sin = -3sin = -3;
• t = thì x = -3sin = -3sin = 0;
• t = thì x = -3sin = -3sin = 3;
• t = T thì x = -3sin = -3sin2 = 0.
‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà x = -3sin trên đoạn [0; 2T]:
Đồ thị hàm số x = -3sin là hình đối xứng với đồ thị hàm số x = 3sin qua trục hoành:
Lời giải bài tập Toán 11 Bài 3: Hàm số lượng giác và đồ thị hay, chi tiết khác:
Hoạt động 1 trang 22 Toán 11 Tập 1: a) Cho hàm số f(x) = x2 ....
Luyện tập 1 trang 23 Toán 11 Tập 1: a) Chứng tỏ rằng hàm số g(x) = x3 là hàm số lẻ ....
Luyện tập 2 trang 23 Toán 11 Tập 1: Cho ví dụ về hàm số tuần hoàn ....
Luyện tập 3 trang 25 Toán 11 Tập 1: Hàm số y = sinx đồng biến hay nghịch biến trên khoảng ? ....
Luyện tập 5 trang 29 Toán 11 Tập 1: Với mỗi số thực m, tìm số giao điểm của đường thẳng y = m ....
Hoạt động 12 trang 29 Toán 11 Tập 1: Xét tập hợp E = ℝ \ {kπ | k ∈ ℤ}. Với mỗi số thực x ∈ E ....
Bài 1 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] ....
Bài 2 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, tìm giá trị của x trên khoảng ....
Bài 3 trang 31 Toán 11 Tập 1: Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng ....
Bài 5 trang 31 Toán 11 Tập 1: Xét tính chẵn, lẻ của các hàm số: a) y = sinx cosx ....
Bài 7 trang 31 Toán 11 Tập 1: Trong bài toán mở đầu, hãy chỉ ra một số giá trị của x ....