Giải Toán 11 trang 23 Tập 2 Kết nối tri thức


Haylamdo biên soạn và sưu tầm với Giải Toán 11 trang 23 Tập 2 trong Bài 21: Phương trình, bất phương trình mũ và lôgarit Toán lớp 11 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11 trang 23.

Giải Toán 11 trang 23 Tập 2 Kết nối tri thức

Luyện tập 3 trang 23 Toán 11 Tập 2: Giải các bất phương trình sau:

a) 0,12x – 1 ≤ 0,12 – x;

b) 3 ∙ 2x + 1 ≤ 1.

Lời giải:

a) Ta có:

0,12x – 1 ≤ 0,12 – x

⇔ 2x – 1 ≥ 2 – x (do 0 < 0,1 < 1)

⇔ 3x ≥ 3

⇔ x ≥ 1.

Vậy tập nghiệm của bất phương trình đã cho là [1; + ∞).

b) 3 ∙ 2x + 1 ≤ 1

2x+113

x+1log213 (do 2 > 1)

⇔ x ≤ log23– 1 – 1

⇔ x ≤ – log23 – log22

⇔ x ≤ – log2(3 ∙ 2)

⇔ x ≤ – log26

Vậy tập nghiệm của bất phương trình đã cho là (– ∞; – log26].

HĐ4 trang 23 Toán 11 Tập 2: Nhận biết nghiệm của bất phương trình lôgarit

Cho đồ thị của các hàm số y = log2x và y = 2 như Hình 6.8. Tìm khoảng giá trị của x mà đồ thị hàm số y = log2x nằm phía trên đường thẳng y = 2 và từ đó suy ra tập nghiệm của bất phương trình log2 x > 2.

HĐ4 trang 23 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Quan sát đồ thị ở Hình 6.8, ta thấy khoảng giá trị của x mà đồ thị hàm số y = log2x nằm phía trên đường thẳng y = 2 là (4; + ∞).

Vậy tập nghiệm của bất phương trình log2 x > 2 là (4; + ∞).

Lời giải bài tập Toán 11 Bài 21: Phương trình, bất phương trình mũ và lôgarit Kết nối tri thức hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác: