Giải Toán 11 trang 52 Tập 2 Kết nối tri thức
Với Giải Toán 11 trang 52 Tập 2 trong Bài 25: Hai mặt phẳng vuông góc Toán lớp 11 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11 trang 52.
Giải Toán 11 trang 52 Tập 2 Kết nối tri thức
HĐ13 trang 52 Toán 11 Tập 2: Cho hình chóp đều . Một mặt phẳng không đi qua S và song song với mặt phẳng đáy, cắt các cạnh tương ứng tại (H.7.69).
a) Giải thích vì sao là một hình chóp đều.
b) Gọi H là tâm của đa giác . Chứng minh rằng đường thẳng SH đi qua tâm K của đa giác đều và HK vuông góc với các mặt phẳng , .
Lời giải:
a) Mặt phẳng không đi qua S và song song với mặt phẳng đáy, cắt các cạnh tương ứng tại nên các đa giác A1A2…An và B1B2…Bn có các cạnh tương ứng song song.
Áp dụng định lí Talet trong từng tam giác SA1A2; SA2A3; …; SA1An, ta được:
, suy ra .
Vì đa giác đều nên đa giác B1B2…Bn đều và SA1 = SA2 = … = SAn nên SB1 = SB2 = …= SBn.
Vậy là hình chóp đều.
b) Vì H là tâm của đáy và hình chóp là hình chóp đều nên
SH ⊥ (A1A2…An).
Do (A1A2…An) // (B1B2…Bn ) và SH ⊥ (A1A2…An) nên SH ⊥ (B1B2…Bn ).
Hơn nữa, là hình chóp đều nên SH giao với (B1B2…Bn ) tại tâm của đáy B1B2…Bn .
Vậy đường thẳng SH đi qua tâm K của đa giác đều và HK vuông góc với các mặt phẳng , .
Câu hỏi trang 52 Toán 11 Tập 2: Hình chóp cụt đều có các cạnh bên bằng nhau hay không?
Lời giải:
Hình chóp cụt đều có các cạnh bên bằng nhau vì:
A1B1 = SA1 – SB1; A2B2 = SA2 – SB2; …; AnBn = SAn – SBn.
Dựa vào kết quả của hoạt động 13, ta có: SA1 = SA2 = … = SAn và SB1 = SB2 = …= SBn nên A1B1 = A2B2 = AnBn.
Lời giải bài tập Toán 11 Bài 25: Hai mặt phẳng vuông góc Kết nối tri thức hay khác: