Bài 5 trang 20 Toán 12 Tập 1 Cánh diều
Trong 5 giây đầu tiên, một chất điểm chuyển động theo phương trình
Giải Toán 12 Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số - Cánh diều
Bài 5 trang 20 Toán 12 Tập 1: Trong 5 giây đầu tiên, một chất điểm chuyển động theo phương trình
s(t) = – t3 + 6t2 + t + 5,
trong đó t tính bằng giây và s tính bằng mét. Chất điểm có vận tốc tức thời lớn nhất bằng bao nhiêu trong 5 giây đầu tiên đó?
Lời giải:
Xét phương trình chuyển động của chất điểm s(t) = – t3 + 6t2 + t + 5 với t ∈ [0; 5].
Vận tốc tức thời của chất điểm là v(t) = s'(t) = – 3t2 + 12t + 1 với t ∈ [0; 5].
Ta có v'(t) = – 6t + 12. Khi đó, trên khoảng (0; 5), v'(t) = 0 khi t = 2.
v(0) = 1, v(2) = 13, v(5) = – 14.
Do đó, v(t) = 13 tại t = 2.
Vậy chất điểm có vận tốc tức thời lớn nhất bằng 13 m/s tại thời điểm t = 2 giây trong 5 giây đầu tiên.
Lời giải bài tập Toán 12 Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số hay, chi tiết khác: