Bài 6 trang 20 Toán 12 Tập 1 Cánh diều
Người ta bơm xăng vào bình của một xe ô tô. Biết rằng thể tích V (lít) của lượng xăng trong bình xăng tính theo thời gian bơm xăng t (phút) được cho bởi công thức
Giải Toán 12 Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số - Cánh diều
Bài 6 trang 20 Toán 12 Tập 1: Người ta bơm xăng vào bình của một xe ô tô. Biết rằng thể tích V (lít) của lượng xăng trong bình xăng tính theo thời gian bơm xăng t (phút) được cho bởi công thức
V(t) = 300(t2 – t3) + 4 với 0 ≤ t ≤ 0,5.
(Nguồn: R.I Charles et al., Algebra 2, Pearson)
a) Ban đầu trong bình xăng có bao nhiêu lít xăng?
b) Sau khi bơm 30 giây thì bình xăng đầy. Hỏi dung tích của bình xăng trong xe là bao nhiêu lít?
c) Khi xăng chảy vào bình xăng, gọi V'(t) là tốc độ tăng thể tích tại thời điểm t với 0 ≤ t ≤ 0,5. Xăng chảy vào bình xăng ở thời điểm nào có tốc độ tăng thể tích là lớn nhất.
Lời giải:
a) Ta có V(0) = 4. Do đó, ban đầu trong bình xăng có 4 lít xăng.
b) Sau khi bơm 30 giây, tức 0,5 phút thì bình xăng đầy.
Ta có V(0,5) = 41,5. Vậy dung tích của bình xăng trong xe là 41,5 lít.
c) Ta có V'(t) = 300(2t – 3t2) với t ∈ [0; 0,5].
Có V''(t) = 300(2 – 6t). Khi đó, trên khoảng (0; 0,5), V"(t) = 0 khi t = .
V'(0) = 0, , V'(0,5) = 75.
Do đó, V'(t) = 100tại t = .
Vậy xăng chảy vào bình xăng ở thời điểm giây kể từ khi bắt đầu bơm có tốc độ tăng
Lời giải bài tập Toán 12 Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số hay, chi tiết khác: