X

Toán 9 Chân trời sáng tạo

Giải Toán 9 trang 73 Tập 1 Chân trời sáng tạo


Với Giải Toán 9 trang 73 Tập 1 trong Bài tập cuối chương 4 Toán 9 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 73.

Giải Toán 9 trang 73 Tập 1 Chân trời sáng tạo

Bài 9 trang 73 Toán 9 Tập 1: Tìm số đo góc α biết rằng:

a) sin α = 0,25;

b) cos α = 0,75;

c) tan α = 1;

d) cot α = 2.

Lời giải:

a) sin α = 0,25 nên α ≈ 14,5°.

b) cos α = 0,75 nên α ≈ 41,4°.

c) tan α = 1 nên α = 45°.

d) cot α = 2 nên α ≈ 0,02°.

Bài 10 trang 73 Toán 9 Tập 1: Cho tam giác ABC vuông tại A có AB = 18 cm, AC = 24 cm. Tính các tỉ số lượng giác của góc B, từ đó suy ra các tỉ số lượng giác của góc C.

Lời giải:

Bài 10 trang 73 Toán 9 Tập 1 Chân trời sáng tạo

Áp dụng định lí Pythagore vào tam giác ABC vuông tại A, ta có:

BC=AB2+AC2=182+242=30  (cm).

Các tỉ số lượng giác của góc B là:

Bài 10 trang 73 Toán 9 Tập 1 Chân trời sáng tạo

Bài 11 trang 73 Toán 9 Tập 1: Cho tam giác ABC vuông tại A. Chứng minh rằng ACAB=sinBsinC.

Lời giải:

Bài 11 trang 73 Toán 9 Tập 1 Chân trời sáng tạo

Ta có: sinB=ACBC;  sinC=ABBC.

Suy ra sinBsinC=ACBC:ABBC=ACBCBCAB=ACAB(đpcm)

Bài 12 trang 73 Toán 9 Tập 1: Cho góc nhọn α biết sin α = 0,8. Tính cos α, tan α và cot α.

Lời giải:

Ta có sin2 α + cos2 α = 1.

Suy ra cosα=±1sin2α=±10,82=±35 .

Vì α là góc nhọn nên cosα=35 .

Khi đó, ta có: tanα=sinαcosα=0,835=43;  cotα=1tanα=34. /span>

Vậy cosα=35;  tanα=43;  cotα=34.

Bài 13 trang 73 Toán 9 Tập 1: Tính giá trị của biểu thức:

a) A = 4 – sin2 45° + 2cos2 60° – 3cot3 45°;

b) B = tan 45° . cos 30° . cot 30°;

c) C = sin 15° + sin 75° – cos 15° – cos 75° + sin 30°.

Lời giải:

a) A = 4 – sin2 45° + 2cos2 60° – 3cot3 45°

= 4 – sin245o + 2cos260o – 3cot345o

=4222+21223  .  13

=412+2143=1

Vậy A = 1.

b) B = tan 45° . cos 30° . cot 30°

=1  .  323=3.

Vậy B = 3.

c) C = sin 15° + sin 75° – cos 15° – cos 75° + sin 30°.

= (sin 15o – cos 75o) + (sin 75o – cos 15o) + sin 30o

= (sin 15o – sin 15o) + (cos 15o – cos 15o) + sin 30o

=sin 30o=12.

Vậy C=12.

Bài 14 trang 73 Toán 9 Tập 1: Cho tam giác OPQ vuông tại O có P^=39° và PQ = 10 cm. Hãy giải tam giác vuông OPQ.

Lời giải:

Bài 14 trang 73 Toán 9 Tập 1 Chân trời sáng tạo

Ta có Q^=90°P^=90°39°=51°.

Xét tam giác OPQ vuông tại O,P^=39° , ta có

OQ = QP . sin 39° = 10 . sin 39° = 6,3 (cm).

Xét tam giác OPQ vuông tại O,Q^=51° , ta có

OP = QP . sin 51° = 10. sin 51° = 7,8 (cm).

Vậy Q^=51° , OP = 7,8 cm, OQ = 6,3 cm.

Bài 15 trang 73 Toán 9 Tập 1: Hai điểm P và Q cách nhau 203 m và thẳng hàng với chân của một tòa tháp (Hình 3). Từ đỉnh của tòa tháp đó, một người nhìn thấy hai điểm P, Q với hai góc nghiêng xuống lần lượt là 38° và 44°. Tính chiều cao của tòa tháp (kết quả làm tròn đến hàng đơn vị của mét).

Bài 15 trang 73 Toán 9 Tập 1 Chân trời sáng tạo

Lời giải:

Ta có >; PMN^=90°38°=52°;QMN^=90°44°=46°

Xét tam giác MPN vuông tại N, ta có:

PN=MN  .  tanPMN^

Xét tam giác MQN vuông tại N, ta có:

QN=MN  .  tanQMN^

Mặt khác, ta có PN – QN = PQ = 203

Suy ra MN  .  tanPMN^MN  .  tanQMN^=203

MNtanPMN^tanQMN^=203

MN=203tanPMN^tanQMN^

MN=203tan52°tan46°831  (m)

Vậy chiều cao của tòa tháp khoảng 831 m.

Bài 16 trang 73 Toán 9 Tập 1: Hai chiếc tàu thủy B và C cùng xuất phát từ một vị trí A, đi thẳng theo hai hướng tạo thành một góc 60° (Hình 4). Tàu B chạy với tốc độ 20 hải lí/giờ, tàu C chạy với tốc độ 15 hải lí/giờ. Hỏi sau 1,5 giờ hai tàu B và C cách nhau bao nhiêu hải lí (kết quả làm tròn đến hàng phần trăm)?

Bài 16 trang 73 Toán 9 Tập 1 Chân trời sáng tạo

Lời giải:

Nối B và C. Kẻ CH ⊥ AB (H ∈ AB).

Bài 16 trang 73 Toán 9 Tập 1 Chân trời sáng tạo

Sau 1,5 giờ tàu B chạy được quãng đường là:

AB = 20.1,5 = 30 (hải lí).

Sau 1,5 giờ tàu C chạy được quãng đường là:

AC = 15.1,5 = 22,5 (hải lí).

Xét tam giác AHC vuông tại H, ta có:

CH=AC  .  sin A=22,5  .  sin 60°=4534  (hải lí).

AH = AC . cos A = 22,5 . cos 60° = 11,25 (hải lí).

Do đó BH = AB – AH = 30 – 11,25 = 18,75 (hải lí).

Mặt khác, tam giác CHB vuông tại H, áp dụng định lý Pythagore ta có:

BC=BH2+CH2=18,752+4534227,04 (hải lí).

Vậy sau 1,5 giờ tàu B cách tàu C là 27,04 hải lí.

Lời giải bài tập Toán 9 Bài tập cuối chương 4 hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác: