X

Toán 9 Kết nối tri thức

Bài 1.23 trang 24 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9


Giải các hệ phương trình:

Giải Toán 9 Bài tập cuối chương 1 - Kết nối tri thức

Bài 1.23 trang 24 Toán 9 Tập 1: Giải các hệ phương trình:

a) 2x+5y=1025x+y=1;

b) 0,2x+0,1y=0,33x+y=5;

c) 32xy=126x4y=2.

Lời giải:

a) Nhân hai vế của phương trình thứ nhất với 5, ta được: 2x+5y=102x+5y=5.

Trừ từng vế hai phương trình của hệ mới, ta được 0x + 0y = 5.            (1)

Do không có giá trị nào của x và y thỏa mãn hệ thức (1) nên hệ phương trình đã cho vô nghiệm.

b) Nhân hai vế của phương trình thứ nhất với 10, ta được: 2x+y=33x+y=5.

Trừ từng vế hai phương trình của hệ mới, ta được x = 2.

Thế x = 2 vào phương trình thứ hai của hệ đã cho, ta có

3 . 2 + y = 5 hay 6 + y = 5, suy ra y = –1.

Vậy hệ phương trình đã cho có nghiệm là (2; –1).

c) Nhân hai vế của phương trình thứ nhất với 2 và chia hai vế của phương trình thứ nhất cho 2, ta được: 3x2y=13x2y=1..

Trừ từng vế hai phương trình của hệ mới, ta được 0x = 0. Phương trình nghiệm đúng với mọi x ∈ ℝ.

Ta có 3x – 2y = 1 hay 2y = 3x – 1, suy ra y=32x12.

Vậy hệ phương trình có vô số nghiệm. Các nghiệm của hệ được viết như sau xy=32x12.

Lời giải bài tập Toán 9 Bài tập cuối chương 1 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác: