X

Toán 9 Kết nối tri thức

Bài 1.24 trang 24 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9


Giải các hệ phương trình:

Giải Toán 9 Bài tập cuối chương 1 - Kết nối tri thức

Bài 1.24 trang 24 Toán 9 Tập 1: Giải các hệ phương trình:

a) 0,5x+2y=2,50,7x3y=8,1;

b) 5x3y=214x+8y=19;

c) 2x2+31+y=23x221+y=3.

Lời giải:

a) Nhân hai vế của phương trình thứ nhất với 3 và nhân hai vế của phương trình thứ hai với 2, ta được: 1,5x+6y=7,51,4x6y=16,2

Trừ từng vế hai phương trình của hệ mới, ta được 2,9x = 8,7, suy ra x = 3.

Thế x = 3 vào phương trình thứ nhất của hệ đã cho, ta có

0,5 . 3 + 2y = –2,5 hay 2y = –4, suy ra y = –2.

Vậy hệ phương trình đã cho có nghiệm là (3; –2).

b) Nhân hai vế của phương trình thứ nhất với 8 và nhân hai vế của phương trình thứ hai với 3, ta được: 40x24y=1642x+24y=57.

Trừ từng vế hai phương trình của hệ mới, ta được 82x = 41, suy ra x=12.

Thế x=12 vào phương trình thứ nhất của hệ đã cho, ta có

5123y=2 hay 3y=92, suy ra y=32.

Vậy hệ phương trình đã cho có nghiệm là 12;  32.

c) Đặt a = x – 2; b = 1 + y.

Khi đó phương trình đã cho trở thành 2a+3b=23a2b=3.(I)

Nhân hai vế của phương trình thứ nhất với 3 và nhân hai vế của phương trình thứ hai với 2, ta được: 6a+9b=66a4b=6..

Trừ từng vế hai phương trình của hệ mới, ta được 13b = 0, suy ra b = 0.

Thế x = 0 vào phương trình thứ nhất của hệ (I), ta có

2a + 3 . 0 = –2 hay 2a = –2, suy ra a = –1.

• Với a = –1 thì x – 2 = –1, suy ra x = 1.

• Với b = 0 thì 1 + y = 0, suy ra y = –1.

Vậy hệ phương trình đã cho có nghiệm là (1; –1).

Lời giải bài tập Toán 9 Bài tập cuối chương 1 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác: