HĐ4 trang 102 Toán 9 Kết nối tri thức Tập 1
(Dựa vào hình vẽ có được sau HĐ3). Bằng cách xét hai tam giác OMA và OMB, chứng minh rằng:
Giải Toán 9 Bài 16: Vị trí tương đối của đường thẳng và đường tròn - Kết nối tri thức
HĐ4 trang 102 Toán 9 Tập 1: (Dựa vào hình vẽ có được sau HĐ3). Bằng cách xét hai tam giác OMA và OMB, chứng minh rằng:
a) MA = MB;
b) MO là tia phân giác của góc AMB;
c) OM là tia phân giác của góc AOB.
Lời giải:
a) Xét hai tam giác vuông OAM và OBM có:
OA = OB; OM chung
Do đó ΔOAM = ΔOBM (cạnh huyền – cạnh góc vuông).
Suy ra AM = BM (hai cạnh tương ứng).
b) Vì ΔOAM = ΔOBM (câu a) nên (hai góc tương ứng).
Suy ra OM là tia phân giác của góc AMB.
c) Vì ΔOAM = ΔOBM (câu a) nên (hai góc tương ứng).
Suy ra Om là tia phân giác của góc AOB.
Lời giải bài tập Toán 9 Bài 16: Vị trí tương đối của đường thẳng và đường tròn hay, chi tiết khác: