Giải Toán 9 trang 11 Tập 1 Kết nối tri thức
Với Giải Toán 9 trang 11 Tập 1 trong Bài 2: Giải hệ hai phương trình bậc nhất hai ẩn Toán lớp 9 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 11.
Giải Toán 9 trang 11 Tập 1 Kết nối tri thức
Mở đầu trang 11 Toán 9 Tập 1: Một mảnh vườn được đánh thành nhiều luống, mỗi luống trồng cùng một số cây cải bắp. Hãy tính số cây cải bắp được trồng trên mảnh vườn đó, biết rằng:
– Nếu tăng thêm 8 luống, nhưng mỗi luống trồng ít đi 3 cây cải bắp thì số cải bắp của cả vườn sẽ ít đi 108 cây;
– Nếu giảm đi 4 luống, nhưng mỗi luống trồng thêm 2 cây thì số cải bắp cả vườn sẽ tăng thêm 64 cây.
Lời giải:
Sau bài học này ta giải quyết được bài toán như sau:
Gọi x là số luống trong vườn, y là số cây cải bắp trồng ở mỗi luống (x, y ∈ ℕ*).
– Nếu tăng thêm 8 luống, nhưng mỗi luống trồng ít đi 3 cây cải bắp thì số cải bắp của cả vườn sẽ ít đi 108 cây;
Số luống trong vườn sau khi tăng thêm 8 luống là x + 8 (luống).
Khi mỗi luống trồng ít đi 3 cây cải bắp thì số cây bắp cải ở mỗi luống là: y – 3 (cây).
Số cây cải bắp của cả vườn là: xy (cây).
Theo đề bài, ta có phương trình là:
(x + 8)(y – 3) = xy – 108
xy – 3x + 8y – 24 = xy – 108
3x – 8y = 84. (1)
– Nếu giảm đi 4 luống, nhưng mỗi luống trồng thêm 2 cây thì số cải bắp cả vườn sẽ tăng thêm 64 cây.
Số luống trong vườn sau khi giảm đi 4 luống là x – 4 (luống).
Khi mỗi luống trồng thêm 2 cây cải bắp thì số cây bắp cải ở mỗi luống là: y + 2 (cây).
Số cây cải bắp của cả vườn là: xy (cây).
Theo đề bài, ta có phương trình là:
(x – 4)( y + 2) = xy + 64
xy + 2x – 4y – 8 = xy + 64
2x – 4y = 72
x – 2y = 36. (2)
Từ (1) và (2) ta có hệ phương trình
Từ phương trình thứ hai, ta có x = 2y + 36. Thế vào phương trình thứ nhất, ta được
3(2y + 36) – 8y = 84, tức là 6y + 216 – 8y = 84, suy ra 2y = 132 hay y = 66.
Từ đó x = 2y + 36 = 2 . 66 + 36 = 168.
Số cây cải bắp được trồng trên mảnh vườn đó là: 168 . 66 = 11 088 (cây).
Vậy số cây cải bắp được trồng trên mảnh vườn đó là 11 088 cây.
HĐ1 trang 11 Toán 9 Tập 1: Cho hệ phương trình
Giải hệ phương trình theo hướng dẫn sau:
1. Từ phương trình thứ nhất, biểu diễn y theo x rồi thế vào phương trình thứ hai để được một phương trình với một ẩn x. Giải phương trình một ẩn đó để tìm giá trị của x.
2. Sử dụng giá trị tìm được của x để tìm giá trị của y rồi viết nghiệm của hệ phương trình đã cho.
Lời giải:
1. Từ phương trình thứ nhất ta có x = 3 – y.
2. Thế vào phương trình thứ hai, ta được
2(3 – y) – 3y = 1, tức là 6 – 2y – 3y = 1, suy ra –5y = –5 hay y = 1.
Từ đó x = 3 – 1 = 2.
Vậy hệ phương trình đã cho có nghiệm là (2; 1).
Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 9 Bài 2: Giải hệ hai phương trình bậc nhất hai ẩn hay khác: