X

Toán 9 Kết nối tri thức

Giải Toán 9 trang 78 Tập 1 Kết nối tri thức


Với Giải Toán 9 trang 78 Tập 1 trong Bài 12: Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng Toán 9 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 9 dễ dàng làm bài tập Toán 9 trang 78.

Giải Toán 9 trang 78 Tập 1 Kết nối tri thức

Bài 4.8 trang 78 Toán 9 Tập 1: Giải tam giác ABC vuông tại A có BC = a, AC = b, AB = c, trong các trường hợp:

a) a = 21, b = 18;

b) b = 10, C^=30°;

c) c = 5, b = 3.

Lời giải:

Bài 4.8 trang 78 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

a) Xét ∆ABC vuông tại A, theo định lí Pythagore, ta có: a2 = b2 + c2

Suy ra c=a2b2=212182=117=3213=313 (do c > 0).

Theo định nghĩa tỉ số lượng giác sin, ta có sinB=ba=1821=67.Từ đó tìm được B^59°.

Theo định lí tổng ba góc của một tam giác, ta có A^+B^+C^=180°.

Suy ra C^=90°B^90°59°=31°.

Vậy ∆ABC có A^=90°,  B^59°,  C^31°,  a=21,  b=18,  c=313.

b) Xét ∆ABC vuông tại A, theo định lí tổng ba góc của một tam giác, ta có: A^+B^+C^=180°.

Suy ra B^=90°C^=90°30°=60°.

Theo định lí 2, ta có: AB=c=btanC=10tan30°=1033.

Theo định lí 1, ta có AC = b = a.cosC, suy ra a=bcosC=10cos30°=1032=203=2033.

Vậy ∆ABC có A^=90°,  B^=60°,  C^=30°,  a=2033,  b=10,  c=1033.

c) Xét ∆ABC vuông tại A, theo định lí Pythagore, ta có: a2 = b2 + c2

Suy ra a=b2+c2=32+52=34 (vì a > 0).

Theo định nghĩa tỉ số lượng giác tan, ta có tanB=bc=35, suy ra B^31°.

Theo định lí tổng ba góc của một tam giác, ta có A^+B^+C^=180°.

Suy ra C^=90°B^90°31°=59°.

Vậy ∆ABC có A^=90°,  B^31°,  C^59°,  a=34,  b=3,  c=5.

Bài 4.9 trang 78 Toán 9 Tập 1: Tính góc nghiêng α của thùng xe chở rác trong Hình 4.22.

Bài 4.9 trang 78 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Lời giải:

Theo định nghĩa tỉ số lượng giác cos, ta có cosα=45, từ đó tính được α ≈ 36°52’.

Vậy góc nghiêng α của thùng xe chở rác khoảng 36°52’.

Bài 4.10 trang 78 Toán 9 Tập 1: Tìm góc nghiêng α và chiều rộng AB của mái nhà kho trong Hình 4.23.

Bài 4.10 trang 78 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Lời giải:

Theo đề ta có hình vẽ:

Bài 4.10 trang 78 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Tứ giác BCDE là hình chữ nhật nên BE = CD = 15 m.

Xét ∆ABE vuông tại E, theo định nghĩa tỉ số lượng giác tan, ta có:

tanB=AEBE=0,915=0,06. Từ đó tìm được B^3°26'.

Theo định lí Pythagore, ta có: AB2 = AE2 + BE2.

Suy ra AB=AE2+BE2=0,92+15215,027 (m) (do AB > 0).

Vậy góc nghiêng của mái nhà kho khoảng 3°26’ và chiều rộng của mái nhà kho khoảng 15,027 m.

Bài 4.11 trang 78 Toán 9 Tập 1: Tính các góc của hình thoi có hai đường chéo dài 23 và 2.

Lời giải:

Theo đề ta có hình vẽ:

Bài 4.11 trang 78 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Hình thoi ABCD có hai đường chéo lần lượt là AC=23; BD = 2 và AC cắt BD tại O. Khi đó AC ⊥ BD; O là trung điểm của AC, BD.

Suy ra OA=AC2=232=3 và OB=BD2=22=1.

Xét ∆OAB vuông tại O, theo định nghĩa tỉ số lượng giác tan, ta có:

tanBAO^=OBOA=13, suy ra BAO^=30°.

Theo định lí tổng ba góc của một tam giác, ta có AOB^+BAO^+ABO^=180°.

Suy ra ABO^=90°BAO^=90°30°=60°.

Hình thoi ABCD có AC, BD là đường chéo nên AC, BD lần lượt là tia phân giác của BAD^,  ABC^.

A^=C^;  B^=D^ (tính chất hình thoi) nên A^=C^=2BAO^=230°=60° và B^=D^=2ABO^=260°=120°.

Vậy A^=C^=60° và B^=D^=120°.

Bài 4.12 trang 78 Toán 9 Tập 1: Cho hình thang ABCD (AD // BC) có AD = 16 cm, BC = 4 cm và A^=B^=ACD^=90°.

a) Kẻ đường cao CE của tam giác ACD. Chứng minh ADC^=ACE^. Tính sin của các góc ADC^,  ACE^ và suy ra AC2 = AE.AD. Từ đó tính AC.

b) Tính góc D của hình thang.

Lời giải:

Bài 4.12 trang 78 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

a) Ta có ADC^+DCE^=90° (hai góc nhọn trong ∆CDE vuông tại E) và ACE^+DCE^=ACD^=90° nên ADC^=ACE^ (cùng phụ góc DCE^).(1)

Xét ∆ACD vuông tại C, ta có sinADC^=ACAD.(2)

Xét ∆ACE vuông tại E, ta có sinACE^=AEAC.(3)

Từ (1), (2) và (3) ta suy ra ACAD=AEAC, do đó AC2 = AE.AD.

Hình thang ABCD có AD // BC và AB ⊥ BC (do B^=90°) nên AB ⊥ AD.

Tứ giác ABCE có A^=B^=E^=90° nên ABCE là hình chữ nhật.

Suy ra AE = BC = 4 cm (tính chất hình chữ nhật).

Khi đó, AC2 = 4.16 = 64 nên AC = 8 (cm) (do AC > 0).

b) Theo câu a, ta có sinADC^=ACAD=816=12, suy ra D^=30°.

Bài 4.13 trang 78 Toán 9 Tập 1: Một người đứng tại điểm A, cách gương phẳng đặt nằm trên mặt đất tại điểm B là 1,2 m, nhìn thấy hình phản chiếu qua gương B của ngọn cây (cây có gốc ở tại điểm C cách B là 4,8 m, B nằm giữa A và C). Biết khoảng cách từ mặt đất đến mắt người đó là 1,65 m. Tính chiều cao của cây (H.4.24).

Bài 4.13 trang 78 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Lời giải:

Theo đề ta có hình vẽ:

Bài 4.13 trang 78 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Xét ∆ABD vuông tại A, ta có tanABD^=ADAB=1,651,2=118.

ABD^=CBE^ nên tanCBE^=118.

Xét ∆BCE vuông tại C, ta có CE=BCtanCBE^=4,8118=6,6(m).

Vậy chiều cao của cây là 6,6 m.

Lời giải bài tập Toán 9 Bài 12: Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác: