Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10


Tính khoảng cách từ một điểm đến một đường thẳng

Với Tính khoảng cách từ một điểm đến một đường thẳng Toán lớp 10 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Tính khoảng cách từ một điểm đến một đường thẳng từ đó đạt điểm cao trong bài thi môn Toán lớp 10.

Tính khoảng cách từ một điểm đến một đường thẳng

A. Phương pháp giải

+ Cho đường thẳng d: ax + by + c = 0 và điểm M ( x0; y0). Khi đó khoảng cách từ điểm M đến đường thẳng d là: d(M; d) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

+ Cho điểm A( xA; yA) và điểm B( xB; yB) . Khoảng cách hai điểm này là :

AB = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Chú ý: Trong trường hợp đường thẳng d chưa viết dưới dạng tổng quát thì đầu tiên ta cần đưa đường thẳng d về dạng tổng quát.

B. Ví dụ minh họa

Ví dụ 1: Khoảng cách từ điểm M( 1; -1) đến đường thẳng ( a) : 3x - 4y - 21 = 0 là:

A. 1    B. 2    C. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10    D. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Hướng dẫn giải

Khoảng cách từ điểm M đến đường thẳng ( a) là:

d(M;a) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Chọn D.

Ví dụ 2: Khoảng cách từ điểm O đến đường thẳng d: Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 1 là:

A. 4,8    B. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10    C. 1    D. 6

Hướng dẫn giải

Đường thẳng d: Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 1 ⇔ 8x + 6y - 48 = 0

⇒ Khoảng cách từ điểm O đến đường thẳng d là :

d( O; d) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 4,8

Chọn A.

Ví dụ 3: Khoảng cách từ điểm M(2; 0) đến đường thẳng Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 là:

A. 2    B. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10    C. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10    D. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Hướng dẫn giải

+ Ta đưa đường thẳng d về dạng tổng quát:

(d) : Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

⇒ Phương trình ( d) : 4( x - 1) – 3( y - 2) = 0 hay 4x - 3y + 2 = 0

+ Khoảng cách từ điểm M đến d là:

d( M; d) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 2

Chọn A.

Ví dụ 4. Đường tròn (C) có tâm là gốc tọa độ O(0; 0) và tiếp xúc với đường thẳng
(d): 8x + 6y + 100 = 0. Bán kính R của đường tròn (C) bằng:

A. R = 4    B. R = 6    C. R = 8    D. R = 10

Lời giải

Do đường thẳng d tiếp xúc với đường tròn ( C) nên khoảng cách từ tâm đường tròn đến đường thẳng d chính là bán kính R của đường tròn

⇒ R= d(O; d) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 10

Chọn D.

Hay lắm đó

Ví dụ 5 . Khoảng cách từ điểm M( -1; 1) đến đường thẳng d: 3x - 4y + 5 = 0 bằng:

A. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10    B. 1    C. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10    D. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Lời giải

Khoảng cách từ điểm M đến đường thẳng d là:

d( M; d) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Chọn A.

Ví dụ 6. Khoảng cách từ giao điểm của hai đường thẳng (a): x - 3y + 4 = 0 và
(b): 2x + 3y - 1 = 0 đến đường thẳng ∆: 3x + y + 16 = 0 bằng:

A. 2√10    B. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10    C. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10    D. 2

Lời giải

Gọi A là giao điểm của hai đường thẳng ( a) và ( b) tọa độ điểm A là nghiệm hệ phương trình :

Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 ⇒ A( -1; 1)

Khoảng cách từ điểm A đến đường thẳng ∆ là :

d( A; ∆) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Chọn C

Ví dụ 7. Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC có A( 1; 2) ; B(0; 3) và C(4; 0) . Chiều cao của tam giác kẻ từ đỉnh A bằng:

A. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10    B. 3    C. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10    D. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Lời giải

+ Phương trình đường thẳng BC:

Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

⇒ ( BC) : 3(x - 0) + 4( y - 3) = 0 hay 3x + 4y - 12 = 0

⇒ chiều cao của tam giác kẻ từ đỉnh A chính là khoảng cách từ điểm A đến đường thẳng BC.

d( A; BC) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Chọn A.

Ví dụ 8. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3;1) . Tính diện tích tam giác ABC.

A. 10    B. 5    C. √26    D. 2√5

Lời giải

+ Phương trình BC:

Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

⇒Phương trình BC: 2( x - 1) + 1( y - 5) = 0 hay 2x + y - 7 = 0

⇒ d( A;BC) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = √5

+ BC = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 2√5

⇒ diện tích tam giác ABC là: S = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 .d( A; BC).BC = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 .√5.2√5 = 5

Chọn B.

Ví dụ 9: Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d1 : 4x - 3y + 5 = 0 và
d2: 3x + 4y – 5 = 0, đỉnh A( 2; 1). Diện tích của hình chữ nhật là:

A. 1.    B. 2    C. 3    D. 4

Lời giải

+ Nhận xét : điểm A không thuộc hai đường thẳng trên.

⇒ Độ dài hai cạnh kề của hình chữ nhật bằng khoảng cách từ A(2; 1) đến hai đường thẳng trên, do đó diện tích hình chữ nhật bằng

S = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 2 .

Chọn B.

Hay lắm đó

C. Bài tập vận dụng

Câu 1: Khoảng cách từ điểm M( 2;0) đến đường thẳng Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 là:

A. 2    B. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10    C. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10    D. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Lời giải:

Đáp án: A

Trả lời:

+ Ta đưa đường thẳng d về dạng tổng quát:

(d) : Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

=> Phương trình (d) : 4( x - 1) – 3( y - 2) = 0 hay 4x - 3y + 2 = 0.

+ Khi đó khoảng cách từ M đến d là:

d(M, d)= Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 2

Câu 2: Đường tròn ( C) có tâm I ( -2; -2) và tiếp xúc với đường thẳng
d: 5x + 12y - 10 = 0. Bán kính R của đường tròn ( C) bằng:

A. R = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10    B. R = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10    C. R = 44    D. R = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Lời giải:

Đáp án: A

Trả lời:

Do đường thẳng d tiếp xúc với đường tròn ( C) nên khoảng cách từ tâm đường tròn ( C) đến đường thẳng d chính là bán kính đường tròn.

=> R = d(I; d) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Câu 3: Hai cạnh của hình chữ nhật nằm trên hai đường thẳng (a) : 4x - 3y + 5 = 0 và
(b) : 3x + 4y - 5 = 0. Biết hình chữ nhật có đỉnh A( 2 ;1). Diện tích của hình chữ nhật là:

A. 1    B. 2    C. 3    D. 4

Lời giải:

Đáp án: B

Trả lời:

Ta thấy: điểm A không thuộc hai đường thẳng trên.

Độ dài hai cạnh kề của hình chữ nhật bằng khoảng cách từ A đến hai đường thẳng trên.

Độ dài 2 cạnh là: d( A; a) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 2; d(A; b) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 1

do đó diện tích hình chữ nhật bằng : S = 2.1 = 2

Câu 4: Cho hai điểm A( 2; -1) và B( 0; 100) ; C( 2; -4) .Tính diện tích tam giác ABC ?

A. 3    B. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10    C. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10    D. 147

Lời giải:

Đáp án: A

Trả lời:

+ Phương trình đường thẳng AC: Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

=> Phương trình AC: 1( x - 2) + 0.(y + 1) = 0 hay x - 2= 0..

+ Độ dài AC = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 3 và khoảng cách từ B đến AC là:

d(B; AC) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 2

=> Diện tích tam giác ABC là : S = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 AC.d( B;AC) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 .3.2 = 3 .

Hay lắm đó

Câu 5: Khoảng cách từ A(3; 1) đến đường thẳng Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 gần với số nào sau đây ?

A. 0, 85    B. 0,9    C. 0,95    D. 1

Lời giải:

Đáp án: B

Trả lời:

Ta đưa đường thẳng d về dạng tổng quát:

(d): Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

=> ( d): 2(x - 1) + 1( y - 3) = 0 hay 2x + y - 5 = 0

=> d(A, d) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 ≈ 0,894

Câu 6: Hai cạnh của hình chữ nhật nằm trên hai đường thẳng 4x - 3y + 5 = 0 và
3x + 4y + 5 = 0 đỉnh A(2; 1) . Diện tích của hình chữ nhật là

A. 6    B. 2    C. 3    D. 4

Lời giải:

Đáp án: A

Trả lời:

+ Khoảng cách từ đỉnh A(2; 1) đến đường thẳng 4x - 3y + 5 = 0 là Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 2

+ Khoảng cách từ đỉnh A(2; 1) đến đường thẳng 3x + 4y + 5 = 0 là Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 3

=> Diện tích hình chữ nhật bằng 2.3 = 6

Câu 7: Tính diện tích hình bình hành ABCD biết A( 1; -2) ; B( 2; 0) và D( -1; 3)

A. 6    B. 4,5    C. 3    D. 9

Lời giải:

Đáp án: D

Trả lời:

+ Đường thẳng AB: Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

=> Phương trình AB: 2(x - 1) – 1(y + 2) = 0 hay 2x – y - 4 = 0

+ độ dài đoạn AB: AB = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = √5

Khoảng cách từ D đến AB: d( D; AB)= Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

=> Diện tích hình chữ nhật ABCD là S = AB.d( D; AB) = √5.Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 9

Câu 8: Tính khoảng cách từ giao điểm của hai đường thẳn (d) : x + y - 2 = 0 và
( ∆) : 2x + 3y - 5 = 0 đến đường thẳng (d’) : 3x - 4y + 11 = 0

A. 1    B. 2    C. 3    D. 4

Lời giải:

Đáp án: B

Trả lời:

+ Giao điểm A của hai đường thẳng d và ∆ là nghiệm hệ phương trình

Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 => A( 1; 1)

+ Khoảng cách từ điểm A đến đường thẳng (d’) là :

d( A; d’) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 2

Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có lời giải hay khác: