Trắc nghiệm Phương trình đường thẳng có đáp án năm 2023 (phần 2)
Trắc nghiệm Phương trình đường thẳng có đáp án năm 2023 (phần 2)
Với bộ Trắc nghiệm Phương trình đường thẳng có đáp án năm 2023 (phần 2) sẽ giúp học sinh hệ thống lại kiến thức bài học và ôn luyện để đạt kết quả cao trong các bài thi môn Hình học lớp 12.
Câu 26: Trong không gian Oxyz, cho đường thẳng d đi qua điểm M và có vectơ chỉ phương là u→ ; cho đường thẳng d’ đi qua điểm M’ và có vectơ chỉ phương là u'→ thỏa mãn [u→, u'→].MM'→ = 0 . Trong những kết luận dưới đây, kết luận nào sai?
A. d và d’ chéo nhau C. d và d’ có thể cắt nhau
B. d và d’ có thể song song với nhau D. d và d’ có thể trùng nhau
Từ giả thiết ta suy ra hai đường thẳng d và d’ đồng phẳng, do đó khẳng định A là sai.
Câu 27: Vị trí tương đối của hai đường thẳng
A. Cắt nhau B. song song C. chéo nhau D. trùng nhau
Hai vecto chỉ phương của hai đường thẳng đã cho lần lượt là:
Đồng thời, điểm này cũng thuộc đường thẳng còn lại.
Vậy hai đường thẳng đã cho trùng nhau.
Câu 28: Vị trí tương đối của hai đường thẳng
A. Cắt nhau B. song song C. chéo nhau D. trùng nhau
Hai vecto chỉ phương của hai đường thẳng đã cho lần lượt là:
Suy ra hai đường thẳng đã cho chéo nhau.
Câu 29: Vị trí tương đối của hai đường thẳng
A. Cắt nhau B. song song C. chéo nhau D. trùng nhau
Câu 30: Tìm tất cả các giá trị của a để hai đường thẳng sau chéo nhau :
d1: x = 1 + at, y = t, z = -1 + 2t, d2: x = 1 - t', y = 2 + 2t', z = 3 - t'
A. a > 0 B. a ≠ -4/3 C. a ≠ 0 D. a = 0
Hai đường thẳng d1, d2 lần lượt đi qua hai điểm M1(1; 0; -1), M2(1; 2; 3) và có vectơ chỉ phương lần lượt là
Hai đường thẳng chéo nhau khi và chỉ khi :
⇔ -5.0 + (a - 2).2 + (2a + 1).4 ≠ 0 ⇔ 10a ≠ 0 ⇔ a ≠ 0
Câu 31: Tìm tất cả các giá trị của a để hai đường thẳng sau vuông góc :
d1: x = 1 - t, y = 1 + 2t, z = 3 + at, d2: x = a + at, y = -1 + t, z = -2 + 2t
A. a=-2 B. a=2 C. a ≠ 2 D. Không tồn tại a
Hai đường thẳng đã cho có hai vecto chỉ phương là u1→(-1; 2; a); u2→(a; 1; 2)
Để hai đường thẳng sau vuông góc thì
u1→.u2→ = -1.a + 2.1 + a.2 = 0 ⇔ a + 2 = 0 ⇔ a = -2
Câu 32: Vị trí tương đối của đường thẳng d: x = 1 + 2t, y = 1 - t, z = 1 - t và mặt phẳng (P): x + y + z - 3 = 0 là:
A. d ⊂ (P) B. cắt nhau C. song song D. Đáp án khác
Đường thẳng d đi qua điểm A( 1 ; 1 ;1) ; có một vecto chỉ phương là ( 2 ; -1 ; -1)
Mặt phẳng (P) có vecto pháp tuyến là
Ta có: u→.n→ = 2.1 + (-1).1 + (-1).1 = 0 và A ∈ (P)
Suy ra, đường thẳng d thuộc mặt phẳng (P).
Câu 33: Vị trí tương đối của đường thẳng d: x = 2 + 4t, y = 3 + t, z = -5t và mặt phẳng (P): x + y + z - 3 = 0 là :
A. d ⊂ (P) B. cắt nhau C. song song D. Đáp án khác
Đường thẳng d đi qua điểm M(2 ;3 ;0) và có vectơ chỉ phương là ud→ = (4; 1; -5), mặt phẳng (P) có vectơ pháp tuyến là uP→ = (1; 1; 1). Ta có :
Suy ra đường thẳng d song song với mặt phẳng (P).
Câu 34: Vị trí tương đối của đường thẳng
và mặt phẳng (P): x + y + z - 10 = 0 là :
A. d ⊂ (P) B. cắt nhau C. song song D. Đáp án khác
Đường thẳng d đi qua A(1 ; 2 ; 0) ; có vecto chỉ phương là ud→(5; 7; 6)
Mặt phẳng (P) có vecto pháp tuyến np→(1; 1; 1)
Ta có: ud→.np→ = 5.1 + 7.1 + 6.1 = 18
Suy ra: đường thẳng d cắt mặt phẳng (P) .
Câu 35: Biết rằng đường thẳng
cắt mặt phẳng (P) : x + y + z - 10 = 0 tại điểm M. Tọa độ điểm M là :
* Viết phương trình đường thẳng d dạng tham số: d đi qua A(1 ; -2 ; 0), vecto chỉ phương (2 ; 1 ; 3):
* Gọi giao điểm của đường thẳng d và mặt phẳng (P) là:
M(1 + 2t; -2 + t; 3t).
Thay tọa độ điểm M vào phương trình mặt phẳng (P) ta được:
Câu 36: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 1 + at và mặt phẳng (P): 2x + y + z + b = 0 . Tìm a và b để đường thẳng d nằm trong mặt phẳng (P)
A. a = 1; b = -5 C. a = -1, b = -5
B. a = -1, b = 5 D. Không tồn tại a, b thỏa mãn
Câu 37: Trong không gian Oxyz, tọa độ của hình chiếu vuông góc của điểm M(5;2;3) trên mặt phẳng (P): 2x + 2y - z + 1 = 0 là:
A. H1(1; -1; -1) B. H2(9; 6; -5) C. H3(1; 0; -2) D. Đáp án khác
Mặt phẳng (P) có VTPT (2; 2; -1)
*Phương trình đường thẳng d đi qua M(5;2;3) vuông góc với mặt phẳng (P) nên nhận (2; 2; -1) làm vecto chỉ phương:
*Khi đó, hình chiếu của M lên mặt phẳng (P) chính là giao điểm của đường thẳng d và mặt phẳng (P) gọi điểm đó là A(5 + 2t; 2 + 2t; 3 - t) .
Thay tọa độ điểm A lên phương trình mặt phẳng (P) ta được:
2(5 + 2t)+ 2 (2 + 2t) – (3 – t) + 1 =0
Câu 38: Trong không gian Oxyz, cho đường thẳng Δ; x = 1 + t, y = 2 + t, z = 1 + 2t và cho điểm M(2;1;4). Hình chiếu vuông góc của điểm M trên đường thẳng Δ là:
A. H1(1; 2; 1) B. H2(0; 1; -1) C. H3(2; 3; 3) D. Đáp án khác
Gọi H là hình chiếu vuông góc của điểm M trên đường thẳng Δ . Ta có :
H ∈ Δ => H(1 + t; 2 + t; 1 + 2t)
uΔ→ = (1; 1; 2), MH→ = (1- t; t + 1; 2t - 3)
MH ⊥ Δ <=> uΔ→.MH→ = 0 <=> 1.(t - 1) + 1.(t + 1) + 2(2t - 3) = 0
<=> 6t - 6 = 0 <=> t = 1 => H(2; 3; 3)
Câu 39: Trong không gian Oxyz, khoảng cách từ M(3;4;1) đến trục Oz bằng:
A. 1 B. 5 C. √26 D. Đáp án khác
Hình chiếu vuông góc của điểm M trên trục Oz là điểm H(0 ;0 ;1). Vậy khoảng cách từ M đến đường thẳng Oz là :
Câu 40: Trong không gian Oxyz, cho hai điểm I(0; 3; 4) . Khoảng cách từ điểm I đến đường thẳng OA bằng:
A. 5 B. 10 C. 50 D. Đáp án khác
Đường thẳng OA đi qua điểm O(0 ;0 ;0) và có vectơ chỉ phương là OA→ = (2; 0; 0). Ta có:
Câu 41: Trong không gian Oxyz, khoảng cách giữa hai đường thẳng
Ta có d1 đi qua điểm M1(1; 2; 3) và có vectơ chỉ phương là
d2 đi qua điểm M2 = (3; 1; -4) và có vectơ chỉ phương là
Ta có hai vectơ u1→ và u2→ cùng phương. Mặt khác điểm M1(1; 2; 3) không thuộc đường thẳng d2 nên hai đường thẳng d1 và d2 song song. Ta có
Suy ra d(d1, d2) = d(M1, M2)
Câu 42: Trong không gian Oxyz, cho đường thẳng d: x = 1 + t, y = 2 -2t, z = -3 . Viết phương trình tham số của đường thẳng Δ nằm trong mặt phẳng (Oxy), song song với d sao cho khoảng cách giữa hai đường thẳng d và Δ đạt giá trị nhỏ nhất
A. d: x = 1 + t, y = 2 -2t, z = 0 C. d: x = t, y = 2 - 2t, z = -3
B. d: x = 1 + t, y = -2t, z = -3 D. d: x = 1, y = 2, z = -3 + t
*Gọi (Q) là mặt phẳng chứa d và vuông góc với mặt phẳng (Oxy). Để khoảng cách giữa hai đường thẳng d và ∆ nhỏ nhất thì ∆ chính là giao tuyến của hai mặt phẳng (Oxy) và mp (Q).
* Mặt phẳng (Oxy) có phương trình là z = 0 có VTPT nOxy→ = (0; 0; 1) .
Đường thẳng d đi qua A(1;2; -3) và có VTCP ud→ = (1; -2; 0)
Suy ra, VTPT của (Q) là nQ→ = [ud→;nOxy→] = (2; 1; 0)
Phương trình mặt phẳng (Q) là: 2(x - 1) + 1(y - 2) + 0(z + 3) = 0
Hay 2x + y -4 =0
* Đường thẳng ∆ cần tìm là giao tuyến của hai mặt phẳng (Oxy) và (Q). Tập hợp các điểm thuộc ∆ là nghiệm hệ phương trình:
* Đặt x = 1 + t thay vào (1) ta được: y = 4 - 2x = 4 - 2(1 + t) = 2 - 2t
Suy ra, phương trình tham số của đường thẳng ∆ là:
Câu 43: Tính khoảng cách giữa hai đường thẳng chéo nhau sau đây
Câu 44: Trong không gian Oxyz, cho đường thẳng
và mặt phẳng 2x - 2y + z + 3 = 0. Tính khoảng cách giữa d và (P)
A. 0 B. 3 C. 1 D. 9
Câu 45: Trong không gian Oxyz, lập phương trình chính tắc của mặt cầu (S) có tâm là I(1;0;-1) và tiếp xúc với đường thẳng
A. (x - 1)2 + y2 + (z + 1)2 = 81 C. (x + 1)2 + y2 + (z - 1)2 = 81
B. (x - 1)2 + y2 + (z + 1)2 = 9 D. (x - 1)2 + y2 + (z + 1)2 = 3
Đường thẳng d đi qua điểm M(6 ;1 ;0) và có vectơ chỉ phương là ud→ = (4; -1; -1). Ta có :
Do đường thẳng d tiếp xúc với mặt cầu (S) nên (S) có bán kính là :
Vậy phương trình của mặt cầu (S) là : (x - 1)2 + y2 + (z + 1)2 = 9
Câu 46: Trong không gian Oxyz, lập phương trình chính tắc của mặt cầu (S) có tâm là I(1;0;-1) và cắt đường thẳng
theo một dây cung AB có độ dài bằng 8
A. (x - 1)2 + y2 + (z + 1)2 = 16 C. (x - 1)2 + y2 + (z + 1)2 = 25
B. (x - 1)2 + y2 + (z + 1)2 = 5 D. (x + 1)2 + y2 + (z - 1)2 = 25
Đường thẳng d đi qua điểm M(-2 ;3 ;2) và có vectơ chỉ phương là ud→ = (-4; 1; 1) Ta có :
Khoảng cách từ I đến đường thẳng d là :
Do d cắt (S) theo dây cung AB có độ dài bằng 8 nên ta có:
Vậy phương trình của mặt cầu (S) là: (x - 1)2 + y2 + (z + 1)2 = 25
Câu 47: Trong không gian Oxyz, cho hai điểm A(-2; -2; -4), M(1; 0; 0) . Lập phương trình đường thẳng d đi qua điểm M, nằm trong mặt phẳng (P): x + y + z - 1 = 0 sao cho khoảng cách từ A đến đường thẳng d đạt giá trị lớn nhất
Ta có:
AM→ (3; 2; 4)
Mặt phẳng (P) có vecto pháp tuyến là np→ (1; 1; 1)
Gọi H là hình chiếu vuông góc của A trên d. Ta có: d(A; d) = AH ≤ AM = √29
Dấu bằng xảy ra khi và chỉ khi H trùng M, nghĩa là d vuông góc với AM.
Từ đó ta được
Vậy d có phương trình là:
Câu 48: Trong không gian Oxyz, cho hai điểm A(2; 0; 1), B(8; 4; -5) và mặt phẳng 2x + 2y - z + 1 = 0 . Tìm tọa độ của điểm M thuộc mặt phẳng (P) sao cho AM2 + BM2 đạt giá trị nhỏ nhất
A. M(1; -2; -1) B. M(9; 6; -5) C. M(1; -2; -5) D. Đáp án khác
Chọn đáp án A
Câu 49: Trong không gian Oxyz, cho mặt cầu (S) có phương trình là: (x + 1)2 + (y - 4)2 + (z + 3)2 = 36 . Số mặt phẳng (P) chứa trục Ox và tiếp xúc với mặt cầu (S) là:
A. 0 B. 1 C. 2 D. Vô số
Mặt cầu (S) có tâm I(-1;4;-3) và có bán kính R = 6. Gọi H là hình chiếu vuông góc của I trên trục Ox. Ta có H(-1;0;0) và IH=5.
Gọi K là hình chiếu vuông góc của I trên mặt phẳng (P). Ta có
d(I; (P)) = IK ≤ IH = 5 < R = 6
Do đó mặt phẳng (P) luôn cắt mặt cầu (S) theo một đường tròn. Vậy không tồn tại mặt phẳng (P) chứa Ox và tiếp xúc với (S)
Câu 50: Trong không gian Oxyz, cho ba điểm A(0; 0; 0), B(1; 2; 3), C(2; 3; 1). Gọi D là chân đường phân giác trong xuất phát từ đỉnh A của tam giác ABC. Trong các khẳng định dưới đây, khẳng định nào sai?
A. AD ⊥ BC
B. Một vectơ chỉ phương của đường thẳng AD là: AB→ + AC→
C. Một vectơ chỉ phương của đường thẳng AD là:
D. Một vectơ chỉ phương của đường thẳng AD là: uAD→ = (1; 1; -2)
Ta có:
Ta thấy tam giác ABC cân tại đỉnh A. Do đó, AD đồng thời là đường cao của tam giác ABC nên các khẳng định A, B và C đều đúng.
Vậy khẳng định D sai.