Thực hành 2 trang 10 Chuyên đề Toán 12 Chân trời sáng tạo


Giải bài toán quy hoạch tuyến tính: F = 25x + 10y → min

Giải Chuyên đề Toán 12 Bài 1: Bài toán quy hoạch tuyến tính - Chân trời sáng tạo

Thực hành 2 trang 10 Chuyên đề Toán 12: Giải bài toán quy hoạch tuyến tính: F = 25x + 10y → min

với ràng buộc 2x3y6x+y4x2.

Lời giải:

Viết lại ràng buộc của bài toán thành

2x3y60x+y40x2.

Tập phương án Ω của bài toán là miền không gạch chéo trên hình dưới đây (không là miền đa giác).

Thực hành 2 trang 10 Chuyên đề Toán 12

Tọa độ của điểm A là nghiệm của hệ

2x3y6=0x+y4=0x=185y=25A185;25.

Tương tự, tìm được điểm B(2; 2).

Miền Ω có hai đỉnh là A185;25 và B(2; 2).

Do Ω nằm trong góc phần tư thứ nhất và các hệ số của biểu thức F = 25x + 10y đều dương nên F đạt giá trị nhỏ nhất tại một đỉnh của Ω.

Ta có F185;25=25185+1025=94; F(2; 2) = 25 ∙ 2 + 10 ∙ 2 = 70.

Vậy F đạt giá trị nhỏ nhất tại đỉnh B(2; 2) và minΩF=F2;2=70.

Lời giải bài tập Chuyên đề Toán 12 Bài 1: Bài toán quy hoạch tuyến tính hay, chi tiết khác:

Xem thêm lời giải bài tập Chuyên đề học tập Toán 12 Chân trời sáng tạo hay, chi tiết khác: